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ABSTRACT
This research paper explores the application of hypernetwork learning algorithm for 
machine learning using the binary double spiral classification task. This study experimentally 
demonstrates a learning rate of 100 % on the dataset with 121 points and up to 98.22 % on the 
binary double spiral dataset with 225 points. The findings provide insights into the benefits, 
usefulness, and potential of hypernetworks in solving complex nonlinear classification tasks. 
The hypernetwork model could be implemented in field programmable gate arrays (FPGAs). 
The hierarchical and distributed characteristics of hypernetwork models, coupled with the 
inherent parallelism of FPGAs, render a potent combination for high-speed response tasks. A 
unique aspect of this approach is the embodiment of biomimetic hierarchical organization 
principles akin to biological information processing, which proved to be highly effective in 
addressing complex computational tasks. 
Keywords: two-spiral task, machine learning, hypernetwork architecture, molecular 
evolution algorithm 

RESUMEN
Este artículo explora la aplicación de algoritmos de aprendizaje de hypernetworks en el campo 
del aprendizaje de máquina, utilizando como ejemplo la tarea de clasificar la doble espiral 
en el dominio binario. Este estudio demuestra experimentalmente una tasa de aprendizaje 
de hasta el 98,22 % con los datos de doble espiral binaria con 225 puntos, y del 100 % en 
el conjunto de datos con 121 puntos. Los hallazgos proporcionan una aproximación sobre 
los beneficios, la utilidad y el potencial de la arquitectura de hypernetworks en la resolución 
de tareas complejas de clasificación no lineal. El algoritmo evolutivo para se puede aplicar 
en matrices de compuertas programables en campo (FPGAs). Las características jerárquicas 
y distribuidas de los modelos de hipernetworks, junto con el paralelismo inherente de las 
FPGAs, constituyen una combinación potente para tareas de alta velocidad de respuesta. Un 
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aspecto único de este enfoque es la incorporación de principios de organización jerárquica 
biomiméticos similares al procesamiento biológico de la información, que mostró ser 
altamente efectivos para abordar tareas computacionales complejas.
Palabras clave: tarea de doble espiral, aprendizaje de máquina, arquitectura hypernetwork, 
algoritmos evolutivos

INTRODUCTION
Research and development across various fields 
is motivated by demanding tasks and practical 
applications. In the domain of machine learning, 
these challenges are frequently embodied by 
curated datasets obtained through empirical means 
or artificial generation. Certain datasets have been 
extensively studied and have become established 
benchmark tasks (Cruz et al., 2022). One such 
benchmark task is the two-spiral classification task.

The classification of the Two-Spiral Task (TSP Task) 
has long posed a formidable challenge in neural 
networks and machine learning, is a well-known 
benchmark for binary classification. The data 
consist of points on two intertwined spirals that 
intersect at the origin, which cannot be linearly 
separated (Chalup & Wiklendt, 2007). 

The original dataset for the two-spiral task (Lang & 
Witbrock, 1988) consisted of 194 data points evenly 
distributed across two intertwined spirals. These 
spirals were identical but rotated π radians relative 
to each other. The data points were represented 
in Cartesian coordinates (x, y) and plotted in a 
configuration where the spiral points formed radial 
rays, as shown in Figure 1, where one spiral is with 
orange dots and the other is with blue dots. The task 
focused on supervised learning of binary classifiers, 
where the aim was to determine to which spiral 
each input data point belonged, based on binary 
labeled targets.

FIGURE 1
Double-spiral dataset plottedon a plane

Note: The figure illustrates the double spiral dataset 
plotted on a plane. The objective of the TSP task is to 
accurately determine the affiliation of an input data 
point (x, y) to either the orange (B) or blue spiral (A).

The Double Spiral dataset presents a particularly 
difficult problem for machine learning algorithms 
due to the intricate nonlinearity and complexity 
entailed in accurately separating the two spirals. 
This is a highly nonlinear problem, solvable with 
backpropagation (Lang & Witbrock, 1988), fuzzy 
logic, and adaptive resonance theory neural 
networks (Carpenter et al., 1992), among others.

The TSP Task has also been used as a benchmark 
task for evaluating the performance of various 
machine learning algorithms, including neural 
networks (Lang & Witbrock, 1988; Singh, 2001).       
Yang & Kao, (2001) described the TSP Task as an 
extremely hard classification task and highlighted 
its use in the neural network community for testing 
and evaluating learning algorithms.
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In addition to neural networks, other techniques 
have been explored for solving TSP. Ikuta et al. 
(2010) proposed a chaos glial network connected to 
a multilayer perceptron (MLP) for solving TSP. The 
chaos glial network was inspired by astrocytes, glial 
cells in the brain, and showed better performance 
compared to conventional MLPs.

In recent years, there has been growing interest in 
bioinspired approaches to robotics and engineering. 
Perez-Nieves et al. (2021) demonstrated the 
successful training of biologically realistic spiking 
neural networks to perform the TSP with high 
performance. The researchers investigated the 
effect of introducing heterogeneity in the time 
scales of neurons when performing tasks with 
realistic and complex temporal structures. They 
found that introducing heterogeneity improved 
the overall performance, stability, and robustness 
of the network. The study also suggested that the 
observed heterogeneity in the brain may play a vital 
role in its ability to adapt to new environments.

This paper presents our findings on the successful 
use of the hypernetwork learning algorithm for 
solving the binary double spiral task.   Through our 
research, we establish the efficacy of hypernetworks 
in effectively learning the double spiral dataset 
and gain valuable insights into the performance of 
alternative machine learning algorithms. Our results 
have significant implications for the application of 
machine learning in handling complex datasets and 
applications beyond the double spiral task.

The hypernetwork learning architecture and the 
binary two-spiral dataset
The binary two-spiral dataset
As mentioned earlier, the double spiral was initially 
defined within the Cartesian coordinate plane. 
However, to apply the hypernetwork architecture 
for learning, it is imperative that both input and 
output data reside within the binary domain. 

Consequently, the dataset has undergone a redesign 
process to facilitate binary input/output, resulting 
in the creation of a binary double spiral, as depicted 
in Figure 2, with two spirals: one represented by 
1 and the other by 0. The organism must learn to 
discriminate the spiral of “1s” from the spiral of “0s” 
in the double spiral data set. In this representation, 
the output values correspond to either 0 or 1, while 
the axes of the plot are labeled with binary numbers 
ranging from 1 to the size of the side. These binary 
numbers are then concatenated to form input 
vectors. For instance, a binary input vector of “0001 
0001” has the desired output of 1, the “0010 1110” 
output 0, and so forth.

The hypernetwork learning architecture
The hypernetwork architecture is a multilevel 
model designed for machine learning (Segovia- 
Juarez et al., 2019). It consists of three hierarchical 
levels: the molecular level, the cellular level, and 
the organism level.

a. The Molecular Level: The atomistic detail 
of the model where molecules are enzyme-
like structures. The interactions between 
these structures typically involve activation 
and inhibition processes. These molecules 
mutate and are then selected based on their 
performance in the given task

b. The Cellular Level: At this level, molecular 
interactions form networks of interactions 
inside and between cells, driven by protein 
self-assembly. The synapse, or connections 
between cells, is dynamic and subjected to 
intracellular dynamics.

c. Organismic Level: This is the highest level of 
organization, where information from cellular 
and molecular interactions is processed and 
used for output.
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FIGURE 2
The double spiral data set with 225 points. See text 
for details

0001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0010 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0011 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1

0100 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1

0101 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1

0110 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1

0111 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1

1000 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1001 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1

1010 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1

1011 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1

1100 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1

1101 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1110 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The hypernetwork architecture learns classification 
tasks through a process known as a variation-
selection algorithm, which functions on the 
structure of the molecular subunits. This process 
begins with mutations in the molecular subunits to 
create variations, which are then evaluated against 
a defined fitness criterion. The best performing 
molecular subunits, observed from their ability 
to correctly classify inputs into their appropriate 
classes, are selected for further rounds of mutation 
and selection, creating an evolutionary learning 
cycle. This cycle continues until the hypernetwork 
can accurately classify all inputs or a termination 
condition such as a maximum number of iterations 
or epochs is met (Segovia-Juarez et al., 2019).

Learning in this architecture involves three 
hierarchical levels: organism level, cellular level, 
and molecular level. Understanding and adjustment 
occur at the molecular level and are reflected in the 
cell performance. This behavior is then scaled up to 
the overall behavior of the system when classifying 
the presented input.

For the training of the binary double spiral dataset, 
an organism with 11 cells was constructed. Four cells 
for the 8-bit input vector (each input cell receives 
two bits), one cell for the output (with a 0 or 1 
output), and two layers of internal cells, with three 
cells in each layer. Figure 3 illustrates the topology 
of cell relationships within the hypernetwork 
organism. Upon request, the corresponding author 
can provide access to the software and datasets 
generated during this study.

To show hypernetwork learning on the binary 
double spiral task, a pair of experiments were per- 
formed:
Learning the 225 vectors (array of 25 x 11), shown 
in Figure 2.

Learning the 121 vectors (array of 11 x 11), which 
is a subset of the previous data set, starts from the 
center of the plane, as shown in Fig. 7 D.
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FIGURE 3
A hypernetwork with 4 input cells, two layers of 
internal cells, and an output layer with 4 cells. This 
organism was used to learn the double spiral data 
set.

Finally, in order to gain insight into the generalization 
capabilities of the hypernetwork architecture, 
we conducted a test by evaluating the trained 
hypernetwork with 121 points to predict the 
outcomes with the double spiral with 225 points.

RESULTS
Learning the double spiral with 225 points
Results of six runs show an average of 96.74% 
correct classification (an average of 217.5 out of 
225 vectors were classified correctly) in 1,200,000 
epochs (see Table 1). The learning curves are shown 
in Figure 4. Each run takes about 60 min on an i7 PC.

FIGURE 4
Six hypernetworks learning the double spiral data 
set with 225 points.

TABLE 1
Results of six hypernetwork organisms for learning 
the double spiral data set with 225 vectors

Exp.
number

Correct % 
classification

N°. of correct 
vectors

1 96.89 218
2 98.22 220
3 96.44 217
4 96.44 217
5 95.56 215
6 96.89 218

Mean 96.74 217.50
95% CL 0.70 1.31

Figure 5 A shows the output obtained by one of 
the top-performing hypernetwork organisms after 
1,200,000 epochs. This hypernetwork achieved 
a learning rate of 96.89 % for the 225 points. The 
number of errors encountered during the learning 
process was seven, as depicted in Fig. 5 B.
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FIGURE 5
The final state of the output training the double 
spiral with 225 input vectors

A. The output of hypernetwork learning at  
1,200,000 epochs.

B. Errors in the final output. Errors are shown 
with “0” and correct output with “1”.

Learning the double spiral with 121 points
The hypernetwork shown in Figure 3 was trained 
with the double spiral data set with 121 points, 
achieving 100% learning at 604,482 epochs, as 
shown in Figure 6. At the beginning, it can be 
observed that the hypernetwork responds to all 
inputs with a “1”, with an error rate of 55 %. As the 
learning progresses, the desired output is rapidly 
formed (Fig. 6), successfully learning the complete 
task at 604,482 epochs.

FIGURE 6
The learning process of the double spiral with 121 
points resulted in achieving 100% accuracy

The results obtained while training the double 
spiral with 121 points are depicted in Figure 7. The 
figure illustrates the output at different stages of 
the training process: initially, after one epoch (Fig. 7 
A), at epoch 2000 (Fig. 7 B), at epoch 300,000 (Fig. 
7 C), and finally, upon reaching 100% learning with 
the desired output (Fig. 7 D).

FIGURE 7
Learning the binary double spiral with 121 points

A. No. Epochs = 1
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B. No. Epochs = 2,000

C. No. Epochs = 300,000

D. No. Epochs = 604,482

Figure 8 displays the error analysis of the 
hypernetwork organism during the learning phase 
of the double spiral with 121 vectors. Initially, at 
the beginning of the learning process, the error 
is observed in half of the bits within the array, as 
illustrated in Figure 8 A. After 2,000 epochs, there 
are 17 points within the array that still exhibit 
errors, as depicted in Figure 8 B. As the training 
progresses to 300,000 epochs, the number of 
points with errors reduces to 3, as shown in Figure 
8 C. Finally, at the end of the learning process, all 
the points have been successfully learned, resulting 
in no errors, as shown in Figure 8 D.

FIGURE 8
Errors while learning the double spiral with 121 
points. Digit “1” is correct, “0” is an error

A. No. Epochs = 1
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C. No. Epochs = 300,000

D. No. Epochs = 604,482

B. No. Epochs = 2,000 Generalization with the double spiral task
The hypernetwork that learned the double spiral 
of 121 points was fed with data from the double 
spiral of 225 points, which includes an additional 
104 points (46 %) following the same spatial 
pattern. The output pattern is shown in Figure 
9 A, while the errors are displayed in Figure 9 B. 
The errors correspond to 30 points deviating from 
the desired pattern. Out of the additional 104 
points, the hypernetwork successfully responded 
correctly to 74 of them (71.15 %). This indicates 
that the hypernetwork demonstrates a degree of 
generalization in this challenging machine learning 
classification task.

FIGURE 9
Testing the hypernetwork trained with 121 points, 
with the double spiral trained with 225 points

A. Output with the 225 points
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B. Errors when testing an additional 104 points. 
Digit “1” is correct, “0” is an error

DISCUSSION AND CONCLUSIONS
We have demonstrated that the hypernetwork 
learns a challenging task of differentiating 
the double spiral dataset in binary space. The 
hypernetwork architecture successfully learns 
the 121-point dataset with 100 % accuracy and 
achieves up to 98.22 % learning accuracy in 
the 225-point task. This architecture exhibits 
generalization capabilities, albeit limited by the 
high dimensionality of the problem, as observed 
in this challenging task. While neural networks can 
also solve this problem, hypernetworks offer the 
advantage of being implementable in the analog 
domain (Segovia et al., 2019). The hypernetwork 
architecture can be beneficial as a platform 
for analogous computing, given its biomimetic 
concept of hierarchical organization and principles 
of biological information processing involving 
molecular, cellular, and organismic levels. With the 
variation-selection learning algorithm acting on the 
molecular structure, the hypernetwork is capable 
of evolving new functionality and adapting to 
changes, analogous to biological systems.

The hypernetwork architecture can be potentially 
implemented with Field-Programmable Gate 

Arrays (FPGAs). FPGAs are programmable logic 
devices that can be configured by the user after 
manufacturing to perform various operations, from 
simple logic gate operations to complex systems on 
chips or even artificial intelligence systems (Ruiz et 
al., 2019). FPGAs have gained popularity in various 
domains, including binary computing, due to 
their high flexibility, reconfigurability, and parallel 
computing capacity (Lysecky et al., 2004; Ruiz et al., 
2019; Wang et al., 2015).

In the case of a hypernetwork, the FPGA could be 
programmed to match the distinct requirements 
of the hypernetwork’s molecular-based learning 
algorithm. This includes matching and thresholding 
functions that are vital in the learning process.
FPGAs have the added advantage of evolvability 
just like the hypernetwork model itself. This means 
that their logic blocks can adapt according to the 
algorithm acting on the structure of the molecular 
subunits, hence resulting in a tightly integrated, 
evolving system that offers potentially fast response 
times due to the inherent parallelism of FPGA 
devices.
 
This compatibility between FPGAs and 
hypernetwork algorithms makes them a potentially 
feasible implementation of the hypernetwork 
architecture, possibly realizing the physical 
realization of evolvable hardware. FPGAs have been 
widely used in the field of evolvable computing, 
which involves the use of evolutionary algorithms 
to design and optimize hardware systems (Dobai & 
Sekanina, 2015; Shang et al., 2020; Yao & Higuchi, 
1999). The reconfigurable nature of FPGAs makes 
them well suited for evolvable computing, as they 
can be dynamically reprogrammed to implement 
different hardware configurations and adapt to 
changing requirements.

FPGAs have also been used in evolvable hardware 
for applications such as neural networks and 
machine learning (Johnson et al., 2017; Whitley et 
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al., 2021). FPGAs can be used to implement artificial 
neural networks, allowing for the evolution of 
network topologies and parameters. Additionally, 
FPGAs have been used to evolve analog circuits and 
explore the dynamics of unclocked FPGAs (Whitley 
et al., 2021).

This paper presents an innovative technique for 
training and employing hypernetwork models in 
analogous computing, highlighting their use in field 
programmable gate arrays (FPGAs). The hierarchical 
and distributed characteristics of hypernetwork 
models, coupled with the inherent parallelism of 
FPGAs, render a potent combination for high-speed 
response tasks. A unique aspect of our approach 
is the embodiment of biomimetic hierarchical 
organization principles akin to biological information 
processing, which we demonstrate to be highly 
effective in addressing complex computational 
tasks. Through experimental outcomes, this 
research emphasizes the potency of hypernetworks 
and FPGAs in the advancement of machine learning 
and computing paradigms.
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