Probabilidad de ocurrencia de incendios forestales en Apurímac

Contenido principal del artículo

Nilton Beltrán Rojas-Briceño
Carolina Soto Carrión
Shirley Tuesta-Mendoza
Jhonsy Omar Silva-López
Gregorio Sáenz Pohl

Resumen

Los incendios forestales son una inquietud global debido a su impacto negativo en los ecosistemas y la vida que albergan. En Perú, entre 2013 y 2017, se quemaron aproximadamente 200 mil hectáreas, siendo la región de Apurímac una de las más afectadas. El objetivo de este estudio fue desarrollar un mapa de probabilidad de incendios forestales, basándose en 1312 registros recopilados entre 2003 y 2022, utilizando Sistemas de Información Geográfica (SIG) y algoritmo de aprendizaje automático MaxEnt. Se usaron 17 variables ambientales predictoras (11 climáticas, dos orográficas y cuatro relacionadas con la actividad humana), seleccionadas estadísticamente de un total de 31 variables. La capacidad predictiva del modelo fue ‘buena’, con Área Bajo la Curva de 0.819. 5,4 % (1134.2 km2) y 15 % (3171.54 km2) de la superficie de Apurímac, principalmente en el norte, presentan ‘muy alta’ y ‘alta’ probabilidad de ocurrencia de incendios forestales, respectivamente. Los ecosistemas de matorral andino (561.25 km2), zona agrícola (277.01 km2) y pajonal de puna húmeda (230.37 km2) presentan las mayores superficies con probabilidad ‘muy alta’ de ocurrencia de incendios forestales. Los SIG y MaxEnt son herramientas útiles e importantes en la toma de decisiones preventivas y de lucha contra los incendios forestales.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Rojas-Briceño, N. B., Soto Carrión, C. ., Tuesta-Mendoza, S., Silva-López, J. O., & Sáenz Pohl, G. (2023). Probabilidad de ocurrencia de incendios forestales en Apurímac. Revista De Investigación Hatun Yachay Wasi, 2(2), 85–97. https://doi.org/10.57107/hyw.v2i2.49
Sección
Artículos

Citas

Anticona, A., Zúñiga, C., Santos, A., Lorenzon, A., & Filho, P. (2023). Gis and fuzzy logic approach for forest fire risk modeling in the Cajamarca region, Peru. Decision Science Letters, 12(2), 353–368. https://doi.org/10.5267/j.dsl.2023.1.002.

Araujo, M., Pearson, R., Thuiller, W., & Erhard, M. (2005). Validation of species-climate impact models under climate change. Global Change Biology, 11(9), 1504–1513. https://doi.org/10.1111/j.1365-2486.2005.001000.x.

Arkin, J., Coops, N., Daniels, L., & Plowright, A. (2023). A novel post-fire method to estimate individual tree crown scorch height and volume using simple RPAS-derived data. Fire Ecology, 19(1), 17. https://doi.org/10.1186/s42408-023-00174-7.

Banerjee, P. (2021). Maximum entropy-based forest fire likelihood mapping: analyzing the trends, distribution, and drivers of forest fires in Sikkim Himalaya. Scandinavian Journal of Forest Research, 36(4), 275–288. https://doi.org/10.1080/02827581.2021.1918239.

Bax, V. (2018). Mapping the risk of forest fires in Peru’s Amazon and Andean Forest regions using the AdaBoost algorithm and Geographic Information Systems. 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4. https://doi.org/10.1109/INTERCON.2018.8526470.

CENEPRED. (2022). Escenario de riesgo por incendios forestales de la Región San Martín. Dirección de Gestión de Procesos. https://sigrid.cenepred.gob.pe/sigridv3/documento/14419.

CGIAR (Consortium for Spatial Information). www.srtm.csi.cgiar.org.

Christensen, B. R. (2015). Use of UAV or remotely piloted aircraft and forward-looking infrared in forest, rural and wildland fire management: evaluation using simple economic analysis. New Zealand Journal of Forestry Science, 45(1), 16. https://doi.org/10.1186/s40490-015-0044-9.

Dormann, C., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García, M., Gruber, B., Lafourcade, B., Leitão, P., Münkemüller, T., McClean, C., Osborne, P., Reineking, B., Schröder, B., Skidmore, A., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1),27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.

ESRI Land Cover (2022). Sentinel-2 10-Meter Land Use/Land Cover. https://livingatlas.arcgis.com/landcover/.

Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(RG2004), 1–33. https://doi.org/10.1029/2005RG000183.

Ferreira, P., Ely, C., & Beal, M. (2021). Different post-fire stages encompass different plant community compositions in fire-prone grasslands from Southern Brazil. Flora, 285, 151937. https://doi.org/10.1016/j.flora.2021.151937.

Fick, S., & Hijmans, R. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086.

Janiec, P., & Gadal, S. (2020). A Comparison of Two Machine Learning Classification Methods for Remote Sensing Predictive Modeling of the Forest Fire in the North-Eastern Siberia. Remote Sensing, 12(24), 4157. https://doi.org/10.3390/rs12244157.

Leroy, B., Meynard, C., Bellard, C., & Courchamp, F. (2016). Virtual species, an R package to generate virtual species distributions. Ecography, 39(6), 599–607. https://doi.org/10.1111/ecog.01388.

Meza, G., Barboza C., Torres G., Cotrina S., Guzmán V., Oliva, M., Bandopadhyay, S., Salas L., & Rojas B., (2020). Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals, 10(1816), 1–21. https://doi.org/10.3390/ani10101816.

Ministerio de Desarrollo Agrario y Riego. (2020). R.M. N° 0322-2020-MIDAGRI. Oficializan el Mapa Nacional de Superficie Agrícola del Perú. https://www.gob.pe/institucion/midagri/normas-legales/1433393-0322-2020-midagri.

Ministerio del Ambiente. (2019). Mapa Nacional de Ecosistemas del Perú: Memoria Descriptiva. Dirección General de Ordenamiento Territorial Ambiental. https://cdn.www.gob.pe/uploads/document/file/309735/Memoria_descriptiva_mapa_Nacional_de_Ecosistemas.pdf.

Ministerio del Ambiente (2019). Monitoreo de las condiciones favorables para la ocurrencia de incendios sobre la cobertura vegetal – CFOI. https://repositoriodigital.minam.gob.pe/handle/123456789/652.

MINEDU. (2020). Descarga de Información espacial del MED. http://sigmed.minedu.gob.pe/descargas/.

Mishra, B., Panthi, S., Poudel, S., & Ghimire, B. R. (2023). Forest fire pattern and vulnerability mapping using deep learning in Nepal. Fire Ecology, 19(1), 3. https://doi.org/10.1186/s42408-022-00162-3.

MTC. (2023). Descarga de datos espaciales. https://portal.mtc.gob.pe/estadisticas/descarga.html.

New, M., Lister, D., Hulme, M., & Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate Research, 21(1), 1–25. https://doi.org/10.3354/cr021001.

Pérez, Y., Pastor, E., Àgueda, A., & Planas, E. (2011). Effect of Wind and Slope When Scaling the Forest Fires Rate of Spread of Laboratory Experiments. Fire Technology, 47(2), 475–489. https://doi.org/10.1007/s10694-010-0168-7.

Phillips, S., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Phillips, S., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x.

Renard, Q., Pélissier, R., Ramesh, B., & Kodandapani, N. (2012). Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21(4), 368. https://doi.org/10.1071/WF10109.

Rojas, N., Cotrina S., Barboza C., Barrena G., Sarmiento, F., Sotomayor, D., Oliva, M., & Salas, L. (2020). Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity, 12(8), 305. https://doi.org/10.3390/d12080305.

Rojas, N., García, L., Cotrina, A., Goñas, M., Salas, R., Silva, J., & Oliva, M. (2022). Land Suitability for Cocoa Cultivation in Peru: AHP and MaxEnt Modeling in a GIS Environment. Agronomy, 12(12), 2930. https://doi.org/10.3390/agronomy12122930.

SERFOR. (2018). Plan de prevención y reducción de riesgos de incendiarios forestales 2019 – 2022. SERFOR.

Tariq, A., Shu, H., Siddiqui, S., Munir, I., Sharifi, A., Li, Q., & Lu, L. (2022). Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. Journal of Forestry Research, 33(1), 183–194. https://doi.org/10.1007/s11676-021-01354-4.

Thapa, S., Chitale, V., Pradhan, S., Shakya, B., Sharma, S., Regmi, S., Bajracharya, S., Adhikari, S., & Dangol, G. (2021). Forest Fire Detection and Monitoring. In Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region, Springer International Publishing. https://doi.org/10.1007/978-3-030-73569-2_8.

Usmadi, D. (2023). Maximum entropy application in predicting the vulnerability of land and forest fires in South Sumatra Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 1183(1), 012105. https://doi.org/10.1088/1755-1315/1183/1/012105.

Yang, X., Jin, X., & Zhou, Y. (2021). Wildfire Risk Assessment and Zoning by Integrating Maxent and GIS in Hunan Province, China. Forests, 12(10), 1299. https://doi.org/10.3390/f12101299.

Zubieta, R., Prudencio, F., Ccanchi, Y., Saavedra, M., Sulca, J., Reupo, J., & Alarco, G. (2021). Potential conditions for fire occurrence in vegetation in the Peruvian Andes. International Journal of Wildland Fire, 30(11), 836–849. https://doi.org/10.1071/WF21029.