Study of the sustainability of the removal of H2S from biogas on a pilot scale through biofiltration

Main Article Content

Clara Figueroa Cornejo
Víctor Meza Contreras
Lawrence Quipuzco Ushñahua

Abstract

The aim of this work was to study the sustainability of H2S removal from biogas at a pilot scale through biofiltration. To achieve this, the characterization of the support and biogas was carried out before and after the biofiltration process; the physical, chemical, and biological characteristics of the compost and critical properties such as porosity, density, moisture, pH, and microbial load were determined. At the end of the biofiltration process, an increase in moisture was observed, which hindered nutrient transmission and energy production through redox processes; the presence of elemental sulfur traces in the support demonstrated that at neutral pH, mass transfer of H2S from the gas phase to the liquid phase increased. It was concluded that: the design of the biofiltration system proposed for a Pilot Test yielded highly efficient removal results; the compost biofilter applied to the biogas production line under a flow rate of 0.5 L min-1 showed a high degree of adaptation to the inlet sulfide concentrations ranging from 2300 to 3700 ppmv; the richness of biomass present in the compost, its physicochemical composition, and buffering capacity allowed the process to conclude without acidification of the medium.

Downloads

Download data is not yet available.

Article Details

How to Cite
Figueroa Cornejo, C., Meza Contreras, V., & Quipuzco Ushñahua, L. (2024). Study of the sustainability of the removal of H2S from biogas on a pilot scale through biofiltration. Revista De Investigación Hatun Yachay Wasi, 3(2), 82–96. https://doi.org/10.57107/hyw.v3i2.75
Section
Artículos

References

Almenglo, F., Ramírez, M., Gómez, J., Cantero, D. (2016). Operational Conditions for Start-up and Nitrate-feeding in an Anoxic Biotrickling Filtration Process at Pilot Scale. Chem. Eng. J., 285, 83–91. https://doi.org/10.1016/j.cej.2015.09.094.

Almenglo, F., González-Cortés, J., Ramírez, M., & Cantero, D. (2023). Recent advances in biological technologies for anoxic biogas desulfurization. Chemosphere, 321, 138084. https://doi.org/10.1016/j.chemosphere.2023.138084.

Blanco, M., Murillo, B., Forero, D., & Cabeza, Z.I. (2019). Evaluación y eficiencia de remoción de Sulfuro de Hidrógeno (H2S) y Amoniaco (NH3) a través de Biofiltración a Escala Piloto. (Tesis de pregrado inédita), Universidad Santo Tomás, Bogotá, Colombia. http://hdl.handle.net/11634/17651.

Buller, L., Sganzerla, W., Berni, M., Brignoli, S., & Forster-Carneiro, T. (2022). Design and techno-economic analysis of a hybrid system for energy supply in a wastewater treatment plant: A decentralized energy strategy. Journal of Environmental Management, 305, 114389. https://doi.org/10.1016/jenvman.2021.114389.

Bustamante, N. (2017). Biofiltración con un sistema de tres lechos de compost para la remoción de sulfuro de hidrógeno. FIGEMPA: Investigación y Desarrollo, 4(2),73–80. https://doi.org/10.29166/revfig.v1i2.71.

Cano, P., Colon, J., Ramírez, M., Lafuente, J., Gabriel, D., & Cantero, D. (2018). Life cycle assessment of different physical-chemical and biological technologies for biogas desulfurization in sewage treatment plants. Clean. Prod., 181, 663–674. https://doi.org/10.1016/j.jclepro.2018.02.018.

Cattaneo, C., Muñoz, R., Korshin, G., Naddeo, V., Belgiorno, V., & Zarra, T. (2023). Biological desulfurization of biogas: A comprehensive review on sulfide microbial metabolism and treatment biotechnologies. Science of The Total Environment, 893, 164689. https://doi.org/10.1016/j.scitotenv.2023.164689.

Chaiprapat, R., Mardthing, D., Kantachote, S., Karnchanawong, D. (2011). Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochemitry, 46(211), 344–352. https://doi.org/10.1016/j.procbio.2010.09.007.

Chew, K. W., Chia, S. R., Yen, H.-W., Nomanbhay, S., Ho, Y.-C., & Show, P. L. (2019). Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability, 11(8), 2266. https://doi.org/10.3390/su11082266.

Cox, H., Deshusses, M. (2001). Filtros biopercoladores. En: Kennes, C., Veiga, MC (eds) Biorreactores para el tratamiento de gases residuales. Contaminación ambiental, 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0930-9_4.

de Rink, R., Klok, J. B. M., van Heeringen, G. J., Sorokin, D. Y., ter Heijne, A., Zeijlmaker, R., Mos, Y. M., de Wilde, V., Keesman, K. J., & Buisman, C. J. N. (2019). Increasing the Selectivity for Sulfur Formation in Biological Gas Desulfurization. Environmental Science & Technology, 53(8), 4519–4527. https://doi.org/10.1021/acs.est.8b06749.

Flores-Cortés, M., Pérez-Trevilla, J., De María Cuervo-López, F., Buitrón, G., & Quijano, G. (2021). H2S oxidation coupled to nitrate reduction in a two-stage bioreactor: Targeting H2S -rich biogas desulfurization. Waste Management, 120, 76–84. https://doi.org/10.1016/j.wasman.2020.11.024.

Huynh, H., Le Thi, V., & Tran, L. (2020). Removal of H2S in biogas using biotrickling filter: Recent development. Process Safety and Environmental Protection, 144, 297 – 309. https://doi.org/10.1016/j.psep.2020.07.011.

Jianping, W., Xia, J., Ziheng, J., Senlin, Y., & Jin, Z., 2020. The performance and microbial community in a slightly alkaline biotrickling filter for the removal of high concentration H2S from biogas. Chemosphere, 249, 126-127. https://doi.org/10.1016/j.chemosphere.2020.126127.

Kennes, C., & Veiga, M. C. (2013). Biotrickling Filters. In Air Pollution Prevention and Control. 121 - 138. https://doi.org/10.1002/9781118523360.ch5.

Kotelnikov, V., Saryglar, C., & Chysyma, R. (2020). Microorganisms in Coal Desulfurization (Review). Applied Biochemistry and Microbiology, 56(5), 521 – 525. https://doi.org/10.1134/S0003683820050105.

Mora, M., Fernández-Palacios, E., Guimerá, X., Lafuente, J., Gamisans, X., & Gabriel, D., (2020). Feasibility of S-rich streams valorization through a two-step biosulfur production process. Chemosphere 253, 126734. https://doi.org/10.1016/j.chemosphere.2020.126734.

Mudliar, S., Giri B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey,R., JuwarkarA.,&Vaidya,A.(2010). Bioreactors for treatment of VOCs and odours – A review. Journal of Environmental Managemen, 91(2010), 1039–1054. https://doi.org/10.1016/j.jenvman.2010.01.06.

Nagendranatha, C., Baeb, S., & Min, B. (2019). Biological removal of H2S gas in a semi-pilot scale biotrickling filter: Optimization of various parameters for efficient removal at high loading rates and low pH conditions. Bioresource Technology, 285(2019), 21328. https://doi.org/10.1016/j.biortech.2019.121328.

Pachaiappan, R., Cornejo-Ponce, L., Rajendran, R., Manavalan, K., Femilaa Rajan, V., & Awad, F. (2022). Una revisión sobre técnicas de biofiltración: avances recientes en la eliminación de compuestos orgánicos volátiles y metales pesados en el tratamiento de agua contaminada. Bioengineered, 13 (4), 8432 – 8477. https://doi.org/10.1080/21655979.2022.2050538.

Pudi, A., Rezaei, M., Signorini, V., Andersson, M.O., Baschetti, M.G., & Mansouri, S.S. (2022). Hy drogen sulfide capture and removal technologies: a comprehensive review of recent de velopments and emerging trends. Sep. Purif. Technol., 298, 121448. https://doi.org/10.1016/j.seppur.2022.121448.

Rabbani, K.A., Charles,W., Kayaalpb, A., Cord-Ruwischa, R., & Hoa, G. (2016). Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochemical Engineering Journal 107, 1–10. https://doi.org/10.1016/j.bej.2015.11.018.

Rybarczyk, P., Szulczynski, B., Gebicki, J., & Hupka, J. (2018). Treatment, of malodorous air in biotrickling filters: a review. Biochemical Engineering Journal, 141(2019), 146-162. https://doi.org/10.1016/j.bej.2018.10.014.

Schiavon, M., Ragazzi, M., Torretta, V., & Rada, E. C. (2016). Comparison between conventional biofilters and biotrickling filters applied to waste bio-drying in terms of atmospheric dispersion and air quality. Environmental Technology, 37(8), 975 – 982. https://doi.org/10.1080/09593330.2015.1095246.

Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J., 44, 73-94. https://doi.org/10.1016/j.bej.2008.12.011.

Werkneh, A.A., (2022). Biogas impurities: environmental and health implications, removal technologies and future perspectives. Heliyon, 8(2022), e10929. https://doi.org/10.1016/j.heliyon.2022.e10929.