Análisis térmico de vigas de concreto reforzado sometidas a incendio localizado usando modelos FDC-FEM

Contenido principal del artículo

Miguel Manco Rivera
Miguel Celis Carbajal
Gustavo Guarniz Avalos

Resumen

La versatilidad y la alta capacidad de carga del concreto reforzado son las principales razones de su masivo empleo en diversas infraestructuras como edificios, puentes, entre otras. Fuera de las cargas normales de operación estas estructuras, pueden ser sometidas a cargas accidentales como las generadas por incendios localizados. La normativa actual ofrece algunas opciones de análisis de esta clase de fenómenos. Los modelos basados en la Fluidodinámica Computacional (FDC) son los más adecuados; sin embargo, dada su complejidad su uso es poco extendido, optándose por metodologías simplificadas. Este trabajo muestra una metodología que acopla modelos en FDC para la simulación del incendio y térmicos en el Elementos Finitos (EF), para la obtención del campo de temperaturas de una viga de concreto reforzado sometida a un escenario de incendio localizado. El análisis se realizó con un modelo unidireccional secuencialmente acoplado en el cual, después de extraer los coeficientes de transferencia de calor y las temperaturas de la superficie adiabática del modelo en FDC, se incluyen estos valores (previa manipulación mediante un programa en FORTRAN) en el modelo de EF, para obtener los campos de temperaturas.
Con los resultados obtenidos se concluye como el empleo de esta metodología, permite estimar adecuadamente las temperaturas en la viga para el caso considerado, siendo posible utilizarlos en un posterior análisis termo-mecánico.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Manco Rivera, M., Celis Carbajal, M., & Guarniz Avalos, G. (2023). Análisis térmico de vigas de concreto reforzado sometidas a incendio localizado usando modelos FDC-FEM. Revista De Investigación Hatun Yachay Wasi, 3(1), 10–24. https://doi.org/10.57107/hyw.v3i1.53
Sección
Artículos

Citas

Alos, J., Paya, I., Hospitaler, A., & Rinaudo, P. (2017). Valencia bridge fire tests: Experimental study of a composite bridge under fire. Journal of Constructional Steel Research, 138, 538–54. https://doi.org/10.1016/j.jcsr.2017.08.008.

Balaji A., Luquman, K., Nagarajan, P., & Madhavan, T. (2016). Studies on the behavior of Reinforced Concrete Short Column subjected to fire. Alexandria Engineering Journal, 55,475–86. https://doi.org/10.1016/j.aej.2015.12.022.

Buttignol, T. (2022). Analytical and numerical analyses of RC beams exposed to fire adopting a LITS trilinear constitutive law for concrete. Case Studies in Construction Materials, 17: e01619. https://doi.org/10.1016/j.cscm.2022.e01619.

European Committee for Standardization (1992). EN 1992-1-2: Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design. https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.2.2004.pdf.

European Committee for Standardization. (2002). EN 1991-1-2: Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. British Standards Institution. https://www.phd.eng.br/wp-content/uploads/2015/12/en.1991.1.2.2002.pdf.

European Committee for Standardization. (2005). EN 1993-1-2: Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design. British Standards Institution. https://library.um.edu.mo/dissertation/b21618677.pdf.

Feenstra, J., Hofmeyer, H., Van Herpen, R., &, Mahendran M. (2018). Automated two-way coupling of CFD fire simulations to thermomechanical FE analyses at the overall structural level. Fire Saf J , 96:165–75. https://doi.org/10.1016/j.firesaf.2017.11.007.

Hurley, M., Gottuk, D., Hall, J., Harada, K., Kuligowski, E., Puchovsky, M., et al. SFPE handbook of fire protection engineering, fifth edition. 2016. https://doi.org/10.1007/978-1-4939-2565-0.

Manco, M., Vaz, M., Cyrino, J., Landesmann, A. (2013). Behavior of stiffened panels exposed to fire. In: Romanoff J, Guedes Soares C, editors. Analysis and Design of Marine Structures, CRC Press; 101–8. https://doi.org/10.1201/b15120-16.

Manco, M., Vaz, M., Cyrino, J., & Landesmann, A. (2018). Ellipsoidal Solid Flame Model for Structures Under Localized Fire. Fire Technology, 54:1505–1532. https://doi.org/10.1007/s10694-018-0750-y.

Manco, M., Vaz, M., Cyrino, J., Landesmann, A. (2020). Evaluation of localized pool fire models to predict the thermal field in offshore topside structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42:613. https://doi.org/10.1007/s40430-020-02694-8.

Manco, M., Vaz, M., Cyrino J., & Landesmann A. (2021a). Thermomechanical performance of offshore topside steel structure exposed to localised fire conditions. Marine Structures, 76:102924.https://doi.org/10.1016/j.marstruc.2020.102924.

Manco, M., Vaz, M., Cyrino, J., & Landesmann A. (2021b). A study on the use of fireproof protection in offshore topside steel structures subject to localised fires. Marine Systems & Ocean Technology, 16, 55 – 68 (2021). https://doi.org/10.1007/s40868-021-00102-x.

McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2013). Fire Dynamics Simulator, Technical Reference Guide, vol 1: Mathematical Model https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1018e6.pdf.

McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2013). Fire Dynamics Simulator, User’s Guide. https://doi.org/http://dx.doi.org/10.6028/NIST.SP.1019.

Payá, I., & Garlock, M. (2012). A numerical investigation on the fire response of a steel girder bridge. Journal of Constructional Steel Research, 75:93–103. https://doi.org/10.1016/j.jcsr.2012.03.012.

Quintiere, J. (2006). Fundamentals of Fire Phenomena. https://doi.org/10.1002/0470091150.

Ryu, M., He, K., Lee, D., Park, S., Thomas, G., & Paik, J. (2021). Finite element modeling for the progressive collapse analysis of steel stiffened-plate structures in fires. Thin-Walled Structures, 159, 107262. https://doi.org/10.1016/j.tws.2020.107262.

Silva, J., Landesmann, A., & Ribeiro, F. (2016). Fire-thermomechanical interface model for performance-based analysis of structures exposed to fire. Fire Safety Journal, 83:66–78. https://doi.org/10.1016/j.firesaf.2016.04.007.

Simulia, D (2012). Abaqus 6.12 documentation. Providence, Rhode Island, US 2012:6. https://doi.org/10.1097/TP.0b013e31822ca79b.

Sjöström, J., Byström, A., Lange, D., & Wickström, U. (2012). Thermal exposure to a steel column from localized fires. SP Technical Research Institute of Sweden https://www.researchgate.net/publication/259357457_Thermal_exposure_to_a_steel_column_from_localized_fires.

Song, Y., Fu, C., Liang, S., Yin, A., & Dang, L. (2019). Fire Resistance Investigation of Simple Supported RC Beams with Varying Reinforcement Configurations. Advances in Civil Engineering, 8625360. https://doi.org/10.1155/2019/8625360.

Wasson, R., Nahid, M., Lattimer, B., & Diller, T. (2016). Influence of a Ceiling on Fire Plume Velocity and Temperature. Fire Technology, 52, 1863–1886. https://doi.org/10.1007/s10694-015-0529-3.

Wickström, U. (2011). The adiabatic surface temperature and the plate thermometer. Fire Safety Science, 10, 1001–11. https://doi.org/10.3801/IAFSS.FSS.10-1001.

Wickström, U., Hunt, S., Lattimer, B., Barnett, J., & Beyler, C. (2018). Technical comment-Ten fundamental principles on defining and expressing thermal exposure as boundary conditions in fire safety engineering. Fire Mater, 42, 985–988. https://doi.org/10.1002/fam.2660.

Wickström, U., Anderson, J., & Sjöström, J. (2019). Measuring incident heat flux and adiabatic surface temperature with plate thermometers in ambient and high temperatures. Fire Mater 43, 51–56. https://doi.org/10.1002/fam.2667.

Xu, Q., Li, G., & Wang, Y. (2021). A simplified method for calculating non-uniform temperature distributions in thin-walled steel members protected by intumescent coatings under localized fires. Thin-Walled Structures, 162, 107580. https://doi.org/10.1016/j.tws.2021.107580.

Zhang, C., Li, G., & Usmani, A. (2013). Simulating the behaviour of restrained steel beams to flame impingement from localized fires. Journal of Constructional Steel Research, 83, 156–65. https://doi.org/10.1016/j.jcsr.2013.02.001.

Zhang, C., Silva, J., Weinschenk, C., Kamikawa, D., & Hasemi, Y. (2016). Simulation Methodology for Coupled Fire-Structure Analysis: Modelling Localized Fire Tests on a Steel Column. Fire Technology, 52, 239–62. https://doi.org/10.1007/s10694-015-0495-9.

Zhang, C., Zhang, Z., & Li, G. (2016). Simple vs. sophisticated fire models to predict performance of SHS column in localized fire. Journal of Constructional Steel Research, 120,62–9. https://doi.org/10.1016/j.jcsr.2015.12.026.

Zhou, J., Zhou, X., Cong, B., & Wang, W. (2023). Comparison of different CFD-FEM coupling methods in advanced structural fire analysis. International Journal of Thermal Sciences, 193, 108465. https://doi.org/10.1016/j.ijthermalsci.2023.108465.