Suitability of the Apurímac territory for potato cultivation

Main Article Content

Nilton Beltrán Rojas Briceño
Carolina Soto Carrión
Jhonsy Omar Silva López
Gregorio Saenz Pohl

Abstract

The expansion of an outstanding crop demands the evaluation of the aptitude of the territory. Given the importance of potato cultivation in Apurímac, six criteria (mean temperature, annual rainfall, elevation, land slope, land cover and use, and soil pH) were selected to assess the agroecological aptitude of the territory; for which, the aptitude thresholds of the criteria were established, and their respective maps were generated. Also, based on expert consultation and the Analytical Hierarchy Process, the importance of the criteria was weighed. Then, the suitability map of the territory for potato cultivation was generated by weighted superimposition of the criteria maps. The temperature was the most important criterion for potato cultivation, while the slope of the land was the least important. In Apurímac, 2,4 % (505.18 km2) of the territory presented a ‘Highly adequate’ aptitude for potato cultivation. At the province level, Chincheros (303.40 km2), Andahuaylas (81.75 km2) and Aymares (72.80 km2) present the largest areas with ‘Highly adequate’ aptitude. The study will provide support for decision-making regarding potato agricultural expansion and territorial planning in Apurímac

Downloads

Download data is not yet available.

Article Details

How to Cite
Rojas Briceño, N. B., Soto Carrión, C., Silva López, J. O., & Saenz Pohl, G. (2023). Suitability of the Apurímac territory for potato cultivation. Revista De Investigación Hatun Yachay Wasi, 2(1), 54–65. https://doi.org/10.57107/hyw.v2i1.35
Section
Artículos

References

Acheampong, E., Macgregor, C., Sloan, S., & Sayer, J. (2019). Deforestation is driven by agricultural expansion in Ghana’s forest reserves. Scientific African, 5, e00146. https://doi.org/10.1016/j.sciaf.2019.e00146.

Akpoti, K., Kabo-bah, A., & Zwart, S. (2019). Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems, 173, 172–208. https://doi.org/10.1016/j.agsy.2019.02.013.

Aldababseh, A., Temimi, M., Maghelal, P., Branch, O., & Wulfmeyer, V. (2018). Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability, 10(3), 1–33. https://doi.org/10.3390/su10030803.

Araujo, J., Cartagena, Y., Castillo, C., Cuesta, H., Monteros, J., Paula, N., Racines, M., Rivadeneira, J., Velásquez, J., León, J., Panchi, N., & Andrade, J. (2021). Manual del cultivo de papa para pequeños productores (3ra ed.). INIAP.

Avilés, J., & Piedra, N. (2017). Manual del cultivo de papa en Costa Rica (Solanum tuberosum L.). Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria.

Bourke, A. (1993). The visitation of God? The potato and the great Irish famine. Lilliput Press.

Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N., Herold, M., & Fritz, S. (2020). Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe (Versión V3.0.1) [Conjunto de datos]. https://doi.org/10.5281/zenodo.3939050.

Calle, Y., Salas L., Cruz, S., Barboza C., Silva L., Iliquín T., & Rojas B. (2020). Land Suitability for Sustainable Aquaculture of Rainbow Trout (Oncorhynchus mykiss) in Molinopampa (Peru) Based on RS, GIS, and AHP. ISPRS International Journal of Geo-Information, 9(1), 28. https://doi.org/10.3390/ijgi9010028.

CIP. (2014). Catálogo de variedades de papa nativa con potencial para la seguridad alimentaria y nutricional de Apurímac y Huancavelica. In Catalogo de variedades de papa nativa con potencial para la seguridad alimentaria y nutricional de Apurímac y Huancavelica. International Potato Center. https://doi.org/10.4160/9789290604549.

Fadl, M., & Abuzaid, A. (2017). Assessment of Land Suitability and Water Requirements for Different Crops in Dakhla Oasis, Western Desert, Egypt. International Journal of Plant & Soil Science, 16(6), 1–16. https://doi.org/10.9734/IJPSS/2017/33835.

FAO. (1976). A framework for land evaluation. In FAO Soils bulletin (Vol. 32). FAO.

Fick, S., & Hijmans, R. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086.

Gitari, H., Gachene, C., Karanja, N., Kamau, S., Nyawade, S., & Schulte, E. (2019). Potato-legume intercropping on a sloping terrain and its effects on soil physico-chemical properties. Plant and Soil, 438(1–2), 447–460. https://doi.org/10.1007/s11104-019-04036-7.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202(2016), 18–27. https://doi.org/10.1016/j.rse.2017.06.031.

GR-Apurímac. (2016). Plan de Desarrollo Regional Concertado Apurímac 2017-2021. Gobierno Regional de Apurímac.

Grisales, O. (2020). Suitable Land for Potato Cultivation in the Västra Nyland Region A GIS Method Template for Field Selection. Degree Programme in Sustainable Coastal Management Ekenäs.

He, Y., Zhou, Y., Cai, W., Wang, Z., Duan, D., Luo, S., & Chen, J. (2017). Using a process-oriented methodology to precisely evaluate temperature suitability for potato growth in China using GIS. Journal of Integrative Agriculture, 16(7), 1520–1529. https://doi.org/10.1016/S2095-3119(16)61627-1.

Hengl, T., De Jesus, J., Heuvelink, G., González, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M., Geng, X., Bauer, B., Guevara, M., Vargas, R., MacMillan, R., Batjes, N., Leenaars, J., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), 1–40. https://doi.org/10.1371/journal.pone.0169748.

Hjelkrem, A., Eikemo, H., Le, V., Hermansen, A., & Nærstad, R. (2021). A process-based model to forecast risk of potato late blight in Norway (The Nærstad model): model development, sensitivity analysis and Bayesian calibration. Ecological Modelling, 450, 109565. https://doi.org/10.1016/j.ecolmodel.2021.109565.

Iliquín, D., Salas L., Rojas B., Silva L., Gómez F., Oliva, M., Quiñones, H., Terrones, M., Barboza, C., & Barrena, G. (2020). Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach. Agronomy, 10(12), 1898. https://doi.org/10.3390/agronomy10121898.

INIA. (2020). Manual técnico: Manejo integrado del cultivo de papa. Instituto Nacional de Innovación Agraria. https://www.inia.gob.pe.

Inostroza, F., Méndez, L., Espinoza, N., Acuña, B., Navarro, G., Cristernas, A., & Larrain, S. (2007). Manual del cultivo de la papa en Chile. Instituto de Investigaciones Agropecuarias (INIA).

Jayasinghe, A., & Withanage, W. (2020). A geographical information system-based multi-criteria decision analysis of potato cultivation land suitability in welimada divisional secretariat, Sri Lanka. Potato Journal, 47(2), 126–134. https://agris.fao.org/agris-search/search.do?recordID=IN2022016802.

Jiang, X., & Yang, L. (2022). Study on the Variation of Climate Suitability of Potato in Different Growth Periods-Taking Wuchuan County, Hohhot City as an Example. International Journal of Natural Resource Ecology and Management, 7(2), 86–92. https://doi.org/10.11648/j.ijnrem.20220702.13.

Kamau, S., Kuria, D., & Gachari, M. (2015). Crop-land Suitability Analysis Using GIS and Remote Sensing in Nyandarua County, Kenya. Journal of Environment and Earth Science, 5(6), 121–http://repository.dkut.ac.ke:8080/xmlui/handle/123456789/370.

Kamkar, B., Dorri, M., & Da Silva, J. (2014). Assessment of land suitability and the possibility and performance of a canola (Brassica napus L.) - Soybean (Glycine max L.) rotation in four basins of Golestan province, Iran. Egyptian Journal of Remote Sensing and Space Science, 17(1), 95–104. https://doi.org/10.1016/j.ejrs.2013.12.001.

Kumar, A., & Pant, S. (2023). Analytical hierarchy process for sustainable agriculture: An overview. MethodsX, 10, 101954. https://doi.org/10.1016/j.mex.2022.101954.

Li, X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang, X., Lin, P., Li, X., Chen, J., He, C., … Zhu, Z. (2020). Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters, 15(9), 094044. https://doi.org/10.1088/1748-9326/ab9be3.

Li, Y., Cui, S., Chang, S., & Zhang, Q. (2019). Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis. Journal of Soils and Sediments, 19(3), 1393–1406. https://doi.org/10.1007/s11368-018-2120-2.

Madrigal, S., & Puga, R. (2018). Aptitud de la tierra y análisis de sensitividad en la planificación del cultivo del manzano en el valle Mala, Perú. Bioagro, 30(2), 11–12. Gale Academic OneFile, link.gale.com/apps/doc/A541892764/E?u=anon~9c7422fc&sid=googleScholar&xid=a809f032.

Mandal, V., Rehman, S., Ahmed, R., Masroor, M., Kumar, P., & Sajjad, H. (2020). Land suitability assessment for optimal cropping sequences in Katihar district of Bihar, India using GIS and AHP. Spatial Information Research, 28(5), 589–599. https://doi.org/10.1007/s41324-020-00315-z.

MIDAGRI. (2021). Boletines Anuales: Producción Agrícola. https://siea.midagri.gob.pe/portal/publicacion/boletines-anuales/4-agricola.

Mighty, M. (2015). Site suitability and the analytic hierarchy process: How GIS analysis can improve the competitive advantage of the Jamaican coffee industry. Applied Geography, 58, 84–93. https://doi.org/10.1016/j.apgeog.2015.01.010.

MINAM. (2019a). Línea de base de la diversidad genética de la papa peruana con fines de bioseguridad. Ministerio del Ambiente.

MINAM. (2019b). Mapa Nacional de Ecosistemas del Perú: Memoria Descriptiva. Lima, Perú: Dirección General de Ordenamiento Territorial Ambiental.

MINAM, & MINAGRI. (2012). Mapa de humedales del Perú. Grupo Multisectorial del Comité Nacional de Humedales.

Molla, S., Rukhsana, & Alam, A. (2020). Land Suitability Appraisal for the Growth of Potato Cultivation: A Study of Sagar Island, India. In Sustainable Development Practices Using Geoinformatics (pp. 111–125). Wiley. https://doi.org/10.1002/9781119687160.ch7.

MTC. (2018). Descarga de datos espaciales. https://portal.mtc.gob.pe/estadisticas/descarga.html.

Mugiyo, H., Chimonyo, V., Sibanda, M., Kunz, R., Masemola, C., Modi, A., & Mabhaudhi, T. (2021). Evaluation of land suitability methods with reference to neglected and underutilised crop species: A scoping review. Land, 10(2), 1–24. https://doi.org/10.3390/land10020125.

Muthoni, J. (2016). Soil fertility situation in potato producing Kenyan highlands Case of KALRO-Tigoni. International Journal of Horticulture. https://doi.org/10.5376/ijh.2016.06.0025.

Olivares, B., & Hernández, R. (2019). Sectorización ecoterritorial para la producción agrícola sostenible del cultivo de papa (Solanum tuberosum L.) en Carabobo, Venezuela. Ciencia y Tecnología Agropecuaria, 20(2), 323–338. https://doi.org/10.21930/rcta.vol20_num2_art:1462.

Ortiz, O., & Mares, V. (2017). The Historical, Social, and Economic Importance of the Potato Crop. In The Potato Genome (pp. 1–10). https://doi.org/10.1007/978-3-319-66135-3_1.

Rojas, N., García, L., Cotrina, A., Goñas, M., Salas, R., Silva, J., & Oliva, M. (2022). Land Suitability for Cocoa Cultivation in Peru: AHP and MaxEnt Modeling in a GIS Environment. Agronomy, 12(12), 2930. https://doi.org/10.3390/agronomy12122930.

Saaty, T. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5.

Saaty, T. (1990). How to make a decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48, 9 – 26. https://doi.org/10.1016/0377-2217(90)90057-I.

Salas, R., Gómez F., Silva L., Rojas B., Oliva, M., Terrones, R., Iliquín T., Barboza C., & Barrena G. (2020). Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS International Journal of Geo-Information, 9(11), 673. https://doi.org/10.3390/ijgi9110673.

SERNANP. (2023). GEO ANP - Visor de las Áreas Naturales Protegidas. http://geo.sernanp.gob.pe.

Singha, C., & Swain, K. (2016). Land suitability evaluation criteria for agricultural crop selection: A review. Agricultural Reviews, 37(2). https://doi.org/10.18805/ar.v37i2.10737.

Singha, C., Swain, K., & Swain, S. (2020). Best crop rotation selection with gis-ahp technique using soil nutrient variability. Agriculture (Switzerland), 10(6), 1 – 18. https://doi.org/10.3390/agriculture10060213.

Tashayo, B., Honarbakhsh, A., Azma, A., & Akbari, M. (2020). Combined Fuzzy AHP–GIS for Agricultural Land Suitability Modeling for a Watershed in Southern Iran. Environmental Management, 66(3), 364 – 376. https://doi.org/10.1007/s00267-020-01310-8.

Valdivia, M., Polreich, S., Torre, M., & de Haan, S. (2015). Local Knowledge of Native Potato (Solanum spp) for Long-term Monitoring on three Andean Communities of Apurimac, Peru. Procedia Environmental Sciences, 29, 64 – 65. https://doi.org/10.1016/j.proenv.2015.07.159.

van Dijk, L., Kacheyo, O., de Vries, M., Lommen, W., & Struik, P. (2022). Crop Cycle Length Determines Optimal Transplanting Date for Seedlings from Hybrid True Potato Seeds. Potato Research, 65(2), 435 – 460. https://doi.org/10.1007/s11540-021-09524-x.

Vargas, R., Fonseca, C., Hareau, G., Ordinola, M., Pradel, W., Robiglio, V., & Suarez, V. (2021). Health crisis and quarantine measures in Peru: Effects on livelihoods of coffee and potato farmers. Agricultural Systems, 187, 103033. https://doi.org/10.1016/j.agsy.2020.103033.

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583 – 594. https://doi.org/10.1080/01431160304987.