Assessment of the danger due to instability of slopes on the PE-3S route, Abancay
Main Article Content
Abstract
The aim of this research was to evaluate the danger due to slope instability in the Section km 770 +617- km 771+706 of the PE-3S route, Abancay, Apurímac region. In this study, five slopes were evaluated under the affected conditions. Slope inventory was used. The Danger Stratigraphy (CENEPRED, 2014) was carried out; the soils of the slopes were classified according to the Unified Soil Classification System (SUCS). ArcGis software was used to determine the coordinates of the pits and GEO 5, to evaluate the stability of the slopes. Sub-Section 1 to Sub-Section 5 were classified respectively as argillaceous gravel (GC), low plasticity clay (CL) and silty gravel (CL-GM). All sub-sections evaluated showed a very high level of danger and the safety factors for each corresponding sub-section showed that there is a greater probability of landslides (minimum value), which determines the instability of the entire sub-section under study.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Centro Nacional de Estimación, Prevención y Reducción del riesgo de desastres (CENEPRED. (2014). Manual para la evaluación de riesgos originados por fenómenos naturales. Versión 02. https://sigrid.cenepred.gob.pe/sigridv3/documento/257.
Craig, A. M. L., & Augusto Filho, O. (2020). Landslide Susceptibility Mapping of Highway Slopes, Using Stability Analyses and GIS Methods. https://doi.org/10.28927/SR.431071.
Dolojan, N. L. J., Moriguchi, S., Hashimoto, M., & Terada, K. (2021). Mapping method of rainfall-induced landslide hazards by infiltration and slope stability analysis. Landslides, 18(6), 2039– 2057. https://doi.org/10.1007/s10346-020-01617-x.
Dong, J., Wang, C., Huang, Z., Yang, J., & Xue, L. (2021). Dynamic response characteristics and instability criteria of a slope with a middle locked segment, Soil Dynamics and Earthquake Engineering, 150, 106899. https://doi.org/10.1016/j.soildyn.2021.106899.
Ferlisi, S., & De Chiara, G. (2016). Risk analysis for rainfall-induced slope instabilities in coarse-grained soils: Practice and perspectives in Italy. In L. C. Stefano Aversa Luciano Picarelli, and Claudio Scavia (Ed.), Landslides and Engineered Slopes. Experience, Theory and Practice (pp. 137–154). CRC Press. https://doi.org/10.1201/b21520-14.
Flores, I., García, J., & González, Y. (2020). Estabilidad de taludes durante un desembalse rápido en presas de tierra con suelos parcialmente saturados. Ingeniería y Desarrollo, 38(1), 13-31. DOI: https://doi.org/10.14482/inde.38.1.624.15.
Gratz, K., Salazar, J., & Rodríguez, C. (2018). Análisis de los factores que determinan el diseño de mallas metálicas para la exactitud de taludes en macizos rocosos. Obras y Proyectos 23, 25-38. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-28132018000100025&lang=es.
Hernández, Y. & Ramírez, H. (2016). Evaluación del riesgo asociado a vulnerabilidad física por taludes y laderas inestables en la microcuenca Cay, Ibagué, Tolima, Colombia. Ciencia e Ingeniería Neogranadina, 26 (2), 111-128, DOI: http://dx.doi.org/10.18359/rcin.180026(2):111-128.
Huang R. Some catastrophic landslides since the twentieth century in the southwest of China. Landslides, 6(1), 69–81. DOI: 10.1007/s10346-009-0142-y.
Instituto de la Construcción y Gerencia (2018). Norma Técnica E.050 Suelos y cimentaciones 2018. https://cdn-web.construccion.org/normas/rne2012/rne2006/files/titulo3/02_E/2018_E050_RM-406-2018-VIVIENDA.pdf.
Marin, R., Mattos, A., & Fernández, C. (2022). Comprensión de la sensibilidad a las propiedades del suelo y las condiciones de lluvia de dos modelos de estabilidad de taludes basados en la física. 44(1). 93–109. https://doi.org/10.18273/revbol.v44n1-2022004.
Medinaceli, R., & Medinacelli, R. (2021). Aplicación de la simulación de Montecarlo a la evaluación probabilística de la estabilidad de taludes en roca. Revista de Medio Ambiente y Mineria. 6(1),33-47. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2519-53522021000100004&lang=es.
Mertens, D. (2015). Research and Evaluation in Education and Psychology: Integrating Diversity with Quantitative, Qualitative, and Mixed Methods (4th ed., p. 332). Thousand Oaks, CA: Sage Publications, Inc.
Palacio, J., Mergili, M., & Aristizábal, E. (2020). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r. slope. stability model. Natural Hazards and Earth System Sciences, 20(3), 815-829. https://doi.org/10.5194/nhess-20-815-2020.
Scaioni M. Modern technologies for landslide monitoring and prediction. Springer; 2015. https://doi.org/10.1007/978-3-662-45931-7.
Sanhueza, C. & Rodríguez, L. (2013). Análisis Comparativo de métodos de cálculo de estabilidad de taludes finitos aplicados a laderas naturales. Revista de la construcción. 12(1). 17-29. http://dx.doi.org/10.4067/S0718-915X2013000100003.
Torres, I. (2020). Evaluación de riesgo de deslizamientos y propuesta geotécnica de la trocha Ayash-Huaripampa tramo km 3+260 al km 3+300. Perfiles de Ingeniería, 16(16), 13-22. https://doi.org/10.31381/perfiles_ingenieria.v20i15.3542.
Turner, A. (2018). Social and environmental impacts of landslides. Innovative Infrastructure Solutions, 3(1), 70. https://doi.org/10.1007/s41062-018-0175-y.
Vega, C., & Velásquez, G. (2020). Análisis de inestabilidad del talud tramo NIC-7 (km 177- 178) Santo Tomás, departamento de Chontales. Revista Científica de FAREM-Estelí, 34. DOI: https://doi.org/10.5377/farem.v0i34.10016.
Wang, Z., & Lin, M. (2021). Finite element analysis method of slope stability based on fuzzy statistics. Earth Sciences Research Journal, 25(1), 123-130. DOI: https://doi.org/10.15446/esrj.v25n1.93320.
Yan K., Liu F., Zhu C., Wang Z., & Zhang J. (2017). Dynamic response of slope with intercalated soft layers under seismic excitations. Chinese Journal of Rock Mechanics and Engineering, 3 6(11):2686–98. DOI: 10.13722/j.cnki.jrme.2017.0440.