Probability of occurrence of forest fires in Apurímac
Main Article Content
Abstract
Forest fires are a global concern due to their negative impact on ecosystems and the life they harbor. In Peru, between 2013 and 2017, approximately 200,000 hectares burned, with the Apurímac region being one of the most affected. The aim of this study was to develop a wildfire probability map, based on 1312 records collected between 2003 and 2022, using Geographic Information Systems (GIS) and MaxEnt machine learning algorithm. 17 predictor environmental variables were used (11 climatic, two orographic and four related to human activity), statistically selected from a total of 31 variables. The predictive capacity of the model was ‘good’, with an Area Under the Curve of 0.819. 5.4 % (1134.2 km2) and 15 % (3171.54 km2) of the surface of Apurímac, mainly in the north, present a ‘very high’ and ‘high’ probability of occurrence of forest fires, respectively. The ecosystems of Andean scrub (561.25 km2), agricultural zone (277.01 km2) and humid puna grassland (230.37 km2) present the largest areas with ‘very high’ probability of occurrence of forest fires. GIS and MaxEnt are useful and important tools in making preventive decisions and fighting forest fires.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Anticona, A., Zúñiga, C., Santos, A., Lorenzon, A., & Filho, P. (2023). Gis and fuzzy logic approach for forest fire risk modeling in the Cajamarca region, Peru. Decision Science Letters, 12(2), 353–368. https://doi.org/10.5267/j.dsl.2023.1.002.
Araujo, M., Pearson, R., Thuiller, W., & Erhard, M. (2005). Validation of species-climate impact models under climate change. Global Change Biology, 11(9), 1504–1513. https://doi.org/10.1111/j.1365-2486.2005.001000.x.
Arkin, J., Coops, N., Daniels, L., & Plowright, A. (2023). A novel post-fire method to estimate individual tree crown scorch height and volume using simple RPAS-derived data. Fire Ecology, 19(1), 17. https://doi.org/10.1186/s42408-023-00174-7.
Banerjee, P. (2021). Maximum entropy-based forest fire likelihood mapping: analyzing the trends, distribution, and drivers of forest fires in Sikkim Himalaya. Scandinavian Journal of Forest Research, 36(4), 275–288. https://doi.org/10.1080/02827581.2021.1918239.
Bax, V. (2018). Mapping the risk of forest fires in Peru’s Amazon and Andean Forest regions using the AdaBoost algorithm and Geographic Information Systems. 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4. https://doi.org/10.1109/INTERCON.2018.8526470.
CENEPRED. (2022). Escenario de riesgo por incendios forestales de la Región San Martín. Dirección de Gestión de Procesos. https://sigrid.cenepred.gob.pe/sigridv3/documento/14419.
CGIAR (Consortium for Spatial Information). www.srtm.csi.cgiar.org.
Christensen, B. R. (2015). Use of UAV or remotely piloted aircraft and forward-looking infrared in forest, rural and wildland fire management: evaluation using simple economic analysis. New Zealand Journal of Forestry Science, 45(1), 16. https://doi.org/10.1186/s40490-015-0044-9.
Dormann, C., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García, M., Gruber, B., Lafourcade, B., Leitão, P., Münkemüller, T., McClean, C., Osborne, P., Reineking, B., Schröder, B., Skidmore, A., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1),27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
ESRI Land Cover (2022). Sentinel-2 10-Meter Land Use/Land Cover. https://livingatlas.arcgis.com/landcover/.
Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(RG2004), 1–33. https://doi.org/10.1029/2005RG000183.
Ferreira, P., Ely, C., & Beal, M. (2021). Different post-fire stages encompass different plant community compositions in fire-prone grasslands from Southern Brazil. Flora, 285, 151937. https://doi.org/10.1016/j.flora.2021.151937.
Fick, S., & Hijmans, R. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086.
Janiec, P., & Gadal, S. (2020). A Comparison of Two Machine Learning Classification Methods for Remote Sensing Predictive Modeling of the Forest Fire in the North-Eastern Siberia. Remote Sensing, 12(24), 4157. https://doi.org/10.3390/rs12244157.
Leroy, B., Meynard, C., Bellard, C., & Courchamp, F. (2016). Virtual species, an R package to generate virtual species distributions. Ecography, 39(6), 599–607. https://doi.org/10.1111/ecog.01388.
Meza, G., Barboza C., Torres G., Cotrina S., Guzmán V., Oliva, M., Bandopadhyay, S., Salas L., & Rojas B., (2020). Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals, 10(1816), 1–21. https://doi.org/10.3390/ani10101816.
Ministerio de Desarrollo Agrario y Riego. (2020). R.M. N° 0322-2020-MIDAGRI. Oficializan el Mapa Nacional de Superficie Agrícola del Perú. https://www.gob.pe/institucion/midagri/normas-legales/1433393-0322-2020-midagri.
Ministerio del Ambiente. (2019). Mapa Nacional de Ecosistemas del Perú: Memoria Descriptiva. Dirección General de Ordenamiento Territorial Ambiental. https://cdn.www.gob.pe/uploads/document/file/309735/Memoria_descriptiva_mapa_Nacional_de_Ecosistemas.pdf.
Ministerio del Ambiente (2019). Monitoreo de las condiciones favorables para la ocurrencia de incendios sobre la cobertura vegetal – CFOI. https://repositoriodigital.minam.gob.pe/handle/123456789/652.
MINEDU. (2020). Descarga de Información espacial del MED. http://sigmed.minedu.gob.pe/descargas/.
Mishra, B., Panthi, S., Poudel, S., & Ghimire, B. R. (2023). Forest fire pattern and vulnerability mapping using deep learning in Nepal. Fire Ecology, 19(1), 3. https://doi.org/10.1186/s42408-022-00162-3.
MTC. (2023). Descarga de datos espaciales. https://portal.mtc.gob.pe/estadisticas/descarga.html.
New, M., Lister, D., Hulme, M., & Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate Research, 21(1), 1–25. https://doi.org/10.3354/cr021001.
Pérez, Y., Pastor, E., Àgueda, A., & Planas, E. (2011). Effect of Wind and Slope When Scaling the Forest Fires Rate of Spread of Laboratory Experiments. Fire Technology, 47(2), 475–489. https://doi.org/10.1007/s10694-010-0168-7.
Phillips, S., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Phillips, S., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x.
Renard, Q., Pélissier, R., Ramesh, B., & Kodandapani, N. (2012). Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21(4), 368. https://doi.org/10.1071/WF10109.
Rojas, N., Cotrina S., Barboza C., Barrena G., Sarmiento, F., Sotomayor, D., Oliva, M., & Salas, L. (2020). Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity, 12(8), 305. https://doi.org/10.3390/d12080305.
Rojas, N., García, L., Cotrina, A., Goñas, M., Salas, R., Silva, J., & Oliva, M. (2022). Land Suitability for Cocoa Cultivation in Peru: AHP and MaxEnt Modeling in a GIS Environment. Agronomy, 12(12), 2930. https://doi.org/10.3390/agronomy12122930.
SERFOR. (2018). Plan de prevención y reducción de riesgos de incendiarios forestales 2019 – 2022. SERFOR.
Tariq, A., Shu, H., Siddiqui, S., Munir, I., Sharifi, A., Li, Q., & Lu, L. (2022). Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. Journal of Forestry Research, 33(1), 183–194. https://doi.org/10.1007/s11676-021-01354-4.
Thapa, S., Chitale, V., Pradhan, S., Shakya, B., Sharma, S., Regmi, S., Bajracharya, S., Adhikari, S., & Dangol, G. (2021). Forest Fire Detection and Monitoring. In Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region, Springer International Publishing. https://doi.org/10.1007/978-3-030-73569-2_8.
Usmadi, D. (2023). Maximum entropy application in predicting the vulnerability of land and forest fires in South Sumatra Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 1183(1), 012105. https://doi.org/10.1088/1755-1315/1183/1/012105.
Yang, X., Jin, X., & Zhou, Y. (2021). Wildfire Risk Assessment and Zoning by Integrating Maxent and GIS in Hunan Province, China. Forests, 12(10), 1299. https://doi.org/10.3390/f12101299.
Zubieta, R., Prudencio, F., Ccanchi, Y., Saavedra, M., Sulca, J., Reupo, J., & Alarco, G. (2021). Potential conditions for fire occurrence in vegetation in the Peruvian Andes. International Journal of Wildland Fire, 30(11), 836–849. https://doi.org/10.1071/WF21029.