Sentiment and emotion analysis about peruvian gastronomy using text mining with Python

Main Article Content

Jesús Espinola Gonzales
Ángel Cobo Ortega
Rocío Rocha Blanco
Elisa Baraibar Diez

Abstract

The aim of the study was to show the process of applying sentiment analysis techniques, also known as opinion mining (OM), for the classification of feelings and emotions in opinion texts automatically. As a case study, the analysis of feelings and emotions in reviews, which come from TripAdvisor and Google, about Peruvian gastronomy is presented. To achieve the objective, the phases of information extraction (opinions), preprocessing and classification have been followed; This is complemented using available Python libraries, with special emphasis on those that allow analysis of texts in Spanish. As a result, the usefulness of a library available as free software with very good results for automating the review classification process is shown. On the other hand, it shows that opinions about Peruvian gastronomy are classified as positive with 68 % vs. 11 % of reviews classified as negative.

Downloads

Download data is not yet available.

Article Details

How to Cite
Espinola Gonzales, J., Cobo Ortega, Ángel, Rocha Blanco, R., & Baraibar Diez, E. (2023). Sentiment and emotion analysis about peruvian gastronomy using text mining with Python. Revista De Investigación Hatun Yachay Wasi, 3(1), 126–136. https://doi.org/10.57107/hyw.v3i1.63
Section
Artículos

References

Blasco, M. (2020). Análisis de sentimiento de la agenda de los partidos políticos españoles en Twitter durante la Moción de Censura de 2018. Un enfoque de datos composicionales. Revista Mediterránea de Comunicación, 11(2), 185-198. https://dialnet.unirioja.es/servlet/articulo?codigo=7491324.

Cheng, A. (2023). Text Vectorization Using Traditional Methods. https://alvinntnu.github.io/NTNU_ENC2045_LECTURES/nlp/text-vec-traditional.html.

Dale, R. (2000). Symbolic Approaches to Natural Language Processing. En D. Robert, H. Moisi, & H. Somers, Handbook of Natural Language Processing. Marcel Dekker, Inc.

Ekman, P. (1999). Basic Emotions. En T. Dalgleish, M. J. Power, Handbook of Cognition and Emotion John Wiley & Sons Ltd. https://doi.org/10.1002/0470013494.ch3.

Guardia, S. (2020). Gastronomía Peruana Patrimonio Cultural de la Humanidad. Universidad de San Martín de Porres. https://catedraunesco.usmp.edu.pe/portfolio_item/gastronomia-peruana/.

Henriquez, C., Guzmán, J., & Salcedo, D. (2016). Minería de Opiniones basado en la adaptación al español de ANEW sobre opiniones acerca de hoteles. Procesamiento del Lenguaje Natural, 56, 25-32. https://www.redalyc.org/pdf/5157/515754423002.pdf.

Insua Yañez, A. (2019). Sistema Deep Learning para el análisis de sentimientos en opiniones de productos para la ordenación de resultados de un buscador semántico. [Tesis de Licenciatura, Universidade da Coruña]. http://hdl.handle.net/2183/25152.

Kaggle. (s.f.). Kaggle. https://www.kaggle.com/.

LI, L., LI, W., & CONG, D. (2019). Naive Bayesian Automatic Classification of Railway Service Complaint Text Based on Eigenvalue Extraction. Technical Gazette, 26(3), 778-785. https://doi.org/10.17559/TV-20190420161815.

Liu, B. (2010). Sentiment Analysis and Subjectivity. En N. Indurkhya, & F. J. Damerau, Handbook of Natural Language Processing. Chapman and Hall/CRC. https://www.cs.uic.edu/~liub/FBS/NLP-handbook-sentiment-analysis.pdf.

Martínez, E., Martín, M., Perea, J., & Ureña, L. (2011). Técnicas de clasificación de opiniones aplicadas a un corpus en español. Revista de Procesamiento del Lenguaje Natural, 47, 163-170. https://www.redalyc.org/pdf/5157/515751747017.pdf.

Moreno, A. (2019). El impacto de la gastronomía peruana en el turismo y el mercado del país [Tesis de Licenciatura, Universidad Santo Tomás]. http://hdl.handle.net/11634/17755.

Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1), 1-135. https://doi.org/10.1561/1500000011.

Perez, J., Rajngewerc, M., Giudici, J., Furman, D., Luque, F., Alemany, L., & Martínez, M. (2023). Pysentimiento: A Python Toolkit for Opinion Mining and Social NLP tasks. arXiv preprint arXiv:2106.09462. DOI: https://doi.org/10.21203/rs.3.rs-3570648/v1.

Weiss, S. M., & Indurkhya, N. (1998). Predictive Data Mining. A Practical Guide. Morgan Kaufmann Publishers, Inc.