SPATIO-TEMPORAL ANALYSIS OF WATER BODIES AND THEIR PREDICTION TO 2031 IN AMAZONAS, PERU

Main Article Content

Elgar Barboza Castillo
David Camán Aliaga
Ruth Guiop Servan
Jhoivi Puerta Culqui

Abstract

Water bodies are important ecosystems that host great biodiversity and are the livelihood of many populations. The aim of this study was to analyze the temporal space of water bodies and their prediction to 2031, using remote sensing techniques in Amazonas. Landsat satellite images from the years 1988, 1998, 2007 and 2019 were used; as well as the Normalized Difference Water Index (NDWI), for the creation of reports and cartographic representations of Land Cover and Use Change (CCUS). The data processing was carried out in a Geographic Information Systems (GIS) environment and MOLUSCE model, to predict the CCUS for 2031. The results reported cartographic accuracies between 81 and 91 % and at the level of water bodies, Lake Pomacochas, Laguna Burlan and Laguna de los Cóndores will be reduced to 425,10; 45,24 and 121,54 ha, respectively. In recent years, surface temperature has increased, mainly in urban and vegetation-free areas. It is concluded that by 2031, water bodies will shrink due to human activities and the effect of climate change, negatively impacting the population and ecosystems.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barboza Castillo, E., Camán Aliaga, D. ., Guiop Servan, R., & Puerta Culqui, . J. . (2024). SPATIO-TEMPORAL ANALYSIS OF WATER BODIES AND THEIR PREDICTION TO 2031 IN AMAZONAS, PERU. Revista De Investigación Hatun Yachay Wasi, 4(1), 7–23. https://doi.org/10.57107/hyw.v4i1.81
Section
Artículos

References

Aguilar, A., & Ward, P. (2003). Globalization, regional development, and mega-city expansion in Latin America: Analyzing Mexico City’s peri-urban hinterland. Cities, 20(1), 3–21. https://doi.org/10.1016/S0264-2751(02)00092-6

Barboza, E., Maicelo, J., Vigo, C., Castro, J., & Oliva, M. (2014). Análisis morfométrico y batimétrico del lago Pomacochas (Perú). INDES Revista de Investigación para el Desarrollo Sustentable, 2(2), 90–97. https://doi.org/10.25127/indes.201402.009

Barboza, E., Turpo, E., de Almeida, C., Salas, R., Rojas, N., Silva, J., Barrena, M., Oliva, M., & Espinoza, R. (2020). Monitoring Wildfires in the Northeastern Peruvian Amazon Using Landsat-8 and Sentinel-2 Imagery in the GEE Platform. ISPRS International Journal of Geo-Information, 9(10), 564. https://doi.org/10.3390/ijgi9100564

Barboza, E., Salas, R., Mendoza, M., Oliva, M., & Corroto, F. (2018). Uso actual del suelo y calidad hidrogeomorfológica del río San Antonio: alternativas para la restauración fluvial en el Norte de Perú. Revista de Investigaciones Altoandinas, 20(2), 203–214. https://doi.org/10.18271/ria.2018.364

Berteaux, D., Gauthier, G., Domine, F., Ims, R., Lamoureux, S., Lévesque, E., & Yoccoz, N. (2017). Effects of changing permafrost and snow conditions on tundra wildlife: critical places and times. Arctic Science, 3(2), 65–90. https://doi.org/10.1139/as-2016-0023

Campos, J., Sillero, N., & Brito, J. (2012). Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara–Sahel transition zone. Journal of Hydrology, 464–465, 438–446. https://doi.org/10.1016/j.jhydrol.2012.07.042

Chuvieco, E. (2016). Fundamentals of Satellite Remote Sensing: An Environmental Approach. Boca Raton, Florida, USA: CRC Press. Taylor & Francis Online, 2nd Edition.

Congedo, L. (2024). Semi-Automatic Classification Plugin Documentation Release 8.1.3.1.

Debnath, M., Syiemlieh, H., Sharma, M., Kumar, R., Chowdhury, A., & Lal, U. (2017). Glacial Lake Dynamics and Lake Surface Temperature Assessment along the Kangchengayo-Pauhunri Massif, Sikkim Himalaya, 1988–2014. Remote Sensing Applications: Society and Environment, 9, 26–41. https://doi.org/10.1016/j.rsase.2017.11.002

Garg, J. (2015). Wetland assessment, monitoring and management in India using geospatial techniques. Journal of Environmental Management, 148, 112–123. https://doi.org/10.1016/j.jenvman.2013.12.018

Gómez, D., Salas, R., Rojas, N., Silva, J., & Oliva, M. (2022). Dynamics of the Burlan and Pomacochas Lakes Using SAR Data in GEE, Machine Learning Classifiers, and Regression Methods. ISPRS International Journal of Geo-Information, 11(11), 534. https://doi.org/10.3390/ijgi11110534

Guo, X., Xiao, J., Zha, T., Shang, G., Liu, P., Jin, C., & Zhang, Y. (2023). Dynamics and biophysical controls of nocturnal water loss in a winter wheat-summer maize rotation cropland: a multi-temporal scale analysis. Agricultural and Forest Meteorology, 342, 109701. https://doi.org/10.1016/j.agrformet.2023.109701

Halmy, M., Gessler, P., Hicke, J., & Salem, B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015

Hennig, T., Kretsch, J., Pessagno, C., Salamonowicz, P., & Stein, W. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45, 1–33. https://doi.org/10.1029/2005RG000183

IIRSA. (2016). La laguna Burlan. https://www.iirsanorte.com.pe/la-laguna-burlan/ (Accedido el 08 agosto 2024).

(INEI). (2018). Amazonas-resultados definitivos. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1567/01TOMO_01.pdf (Accedido el 08 agosto 2024).

Leiva, D., Goñas, M., Culqui, L., Santa Cruz, C., Rascón, J., & Oliva, M. (2022). Spatiotemporal distribution of physicochemical parameters and toxic elements in Lake Pomacochas, Amazonas, Peru. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.885591

Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X., & Yao, J. (2019). Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China). Science of The Total Environment, 660. https://doi.org/10.1016/j.scitotenv.2019.01.015

Ministerio del Ambiente (MINAM). (20 de julio de 2024). (2014a). Protocolo: Evaluación de la Exactitud Temática del Mapa de Deforestación. Dirección General de Ordenamiento Territorial. https://www.minam.gob.pe/ordenamientoterritorial/wp-content/uploads/sites/18/2013/10/Protocolo-Validacion-Mapa-Deforestacion.pdf

Ministerio del Ambiente (MINAM). (20 de julio de 2024). (2014b). Mapas kernel como indicador de la concentración de la pérdida de bosques húmedos amazónicos del Perú. http://geobosques.minam.gob.pe/geobosque/

Ministerio del Ambiente (MINAM). (30 de julio de 2024). (2016). Procedimiento Técnico y Metodológico para la Elaboración del Estudio Especializado de Análisis de los Cambios de la Cobertura y Uso de la Tierra. Lima, Perú. https://www.minam.gob.pe/disposiciones/resolucion-ministerial-n-081-2016-minam/

Ministerio del Ambiente (MINAM). (15 de julio de 2024). (2019). Mapa nacional de ecosistemas 3 memoria descriptiva. www.minam.gob.pe

Nery, T., Sadler, R., White, B., & Polyakov, M. (2018). Predicting future plantation forest development in response to policy initiatives: A case study of the Warren River Catchment in Western Australia. Environmental Science & Policy, 92. https://doi.org/10.1016/j.envsci.2018.11.021

NextGIS. (2016). Landscape Change Analysis with MOLUSCE - Methods and Algorithms.

Obodai, J., Adjei, K., Odai, S., & Lumor, M. (2019). Land use/land cover dynamics using landsat data in a gold mining basin—the Ankobra, Ghana. Remote Sensing Applications: Society and Environment, 13, 247–256. https://doi.org/10.1016/j.rsase.2018.10.007

Ogunjobi, K., Adamu, Y., Akinsanola, A., & Orimoloye, I. (2018). Spatio-temporal analysis of land use dynamics and its potential indications on land surface temperature in Sokoto Metropolis, Nigeria. Royal Society Open Science, 5, 1–10. https://doi.org/10.1098/rsos.180661

Orimoloye, I., Kalumba, A., Mazinyo, S., & Nel, W. (2020). Geospatial analysis of wetland dynamics: Wetland depletion and biodiversity conservation of Isimangaliso Wetland, South Africa. Journal of King Saud University - Science, 32(1), 90–96. https://doi.org/10.1016/j.jksus.2018.03.004

Pandit, S., Shimada, S., & Dube, T. (2024). Comprehensive analysis of land use and cover dynamics in Djibouti using machine learning technique: A multi-temporal assessment from 1990 to 2023. Environmental Challenges, 15, 100920. https://doi.org/10.1016/j.envc.2024.100920

Pei, W., Yao, S., Knight, J., Dong, S., Pelletier, K., Rampi, L., Wang, Y., & Klassen, J. (2017). Mapping and detection of land use changes in a coal mining area using object-based image analysis. Environmental Earth Sciences, 76(3). https://doi.org/10.1007/s12665-017-6444-9

Pepin, N., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J., Vuille, M., & Adler, C. (2022). Climate Changes and Their Elevational

Patterns in the Mountains of the World. Reviews of Geophysics, 60(1), e2020RG000730. https://doi.org/10.1029/2020RG000730

Polishchuk, Y., & Sharonov, D. (2013). Studying the dynamics of thermokarst lake fields in Altai Mountain valleys. Atmospheric and Oceanic Physics, 49(9), 1074–1077.

Qiu, J., Shen, Z., Chen, L., & Hou, X. (2019). Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China. Environmental Monitoring and Assessment, 191(9), 582. https://doi.org/10.1007/s10661-019-7747-y

Shukla, A., Garg, P., & Srivastava, S. (2018). Evolution of Glacial and High-Altitude Lakes in the Sikkim, Eastern Himalaya Over the Past Four Decades (1975–2017). Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00081

Turner, R., van den Bergh, J., Soderqvist, T., Barendregt, A., van der Straaten, J., Maltby, E., & van Lerland, E. (2000). Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecological Economics, 35, 7–23. https://doi.org/10.1016/S0921-8009(00)00164-6

Xiao, H., Kopecka, M., Guo, S., Guan, Y., Cai, D., Zhang, C., Zhang, X., & Wutao, Y. (2018). Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid. Sustainability, 10, 260. https://doi.org/10.3390/su10020260

Yulianto, F., Prasasti, I., Pasaribu, J., Listi, H., Zylshal, Z., Haryani, N., & Sofan, P. (2016). The dynamics of land use/land cover change modeling and their implication for the flood damage assessment in the Tondano watershed, North Sulawesi, Indonesia. Modeling Earth Systems and Environment, 2. https://doi.org/10.1007/s40808-016-0100-3

Zhang, Y., Guan, D., Jin, C., Wang, A., Wu, J., & Yuan, F. (2011). Analysis of impacts of climate variability and human activity on streamflow for a river basin in northeast China. Journal of Hydrology, 410(3), 239–247. https://doi.org/10.1016/j.jhydrol.2011.09.023

Zhang, Y., Liang, W., Liao, Z., Han, Z., Xu, X., Jiao, R., & Liu, H. (2019). Effects of climate change on lake area and vegetation cover over the past 55 years in Northeast Inner Mongolia grassland, China. Theoretical and Applied Climatology, 138. https://doi.org/10.1007/s00704-019-02802-2