BIOETHANOL PRODUCTION FROM ORANGE (Citrus sinensis) AND BANANA (Musa paradisiaca L.) WASTE
Main Article Content
Abstract
In this research, the most efficient treatment to produce bioethanol from orange (Citrus sinensis) and banana (Musa paradisiaca L.) waste was determined. This study had an experimental design, with four treatments with three repetitions each: T1 (1 kg of orange waste), T2 (1 kg of banana waste), T3 (½ kg of orange waste + ½ kg of banana waste) and T4 (½ kg of orange waste + ½ kg of banana waste); a yeast dose of 5 g/L of glucose syrup was added to the first three treatments and the fourth was the control. In each treatment, the procedures of pretreatment, acid hydrolysis, fermentation and simple distillation were applied. The results showed that for T1 a volume of 221.67 mL and 12.33 % bioethanol was obtained, for T2, 235 mL of bioethanol with 14.67 % purity, for T3, a volume of 255.33 mL and 14.67 % purity and in T4, 206.67 mL of bioethanol with 9 % purity. It is concluded that T3 achieved a higher volume and purity of bioethanol, being the treatment with the best results.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ayala, J., Montero, G., Coronado, M., García, C., Curiel, M., León, J., Sagaste, C., & Montes, D. (2021). Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules, 26(5), 1348. https://doi.org/10.3390/molecules26051348
Canizales, R., Zavala, F., Suazo, K., Rivera, Y., & Reyes, J. (2022). Obtención de bioetanol a partir de residuo del naranja Citrus sinensis (variedad Valencia). Universidad Nacional Autónoma de Honduras.
Christofi, A., Tsipiras, D., Malamis, D., Moustakas, K., Mai, S., & Barampouti, E. (2022). Biofuels production from orange juice industrial waste within a circular economy vision. Journal of Water Process Engineering, 49, 103028. https://doi.org/10.1016/j.jwpe.2022.103028
Cuadrado, B., & Vélez, M. (2006). Práctica Nº 1. Obtención de vino de frutas. Guía de Prácticas de Microbiología Industrial. Editor Cartagena de Indias. Editorial Universitaria.
Ebrahimian, F., Khoshnevisan, B., Mohammadi, A., Karimi, K., & Birkved, M. (2023). A biorefinery platform to valorize organic fraction of municipal solid waste to biofuels: An early environmental sustainability guidance based on life cycle assessment. Energy Conversion and Management, 283, 116905. https://doi.org/10.1016/j.enconman.2023.116905
Favaretto, D., Rempel, A., Lanzini, J., Silva, A., Lazzari, T., Barbizan, L., & Treichel, H. (2023). Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World Journal of Microbiology and Biotechnology, 39(6), 144. https://doi.org/10.1007/s11274-023-03588-2
González, M., Pérez, S., Wong, A., Bello, R., & Yañez, G. (2015). Residuos agroindustriales con potencial para la producción de metano mediante la digestión anaerobia. Revista Argentina de Microbiología, 47(3), 229-235. https://doi.org/10.1016/j.ram.2015.05.003
Gupte, A., Di Vita, N., Myburgh, M., Cripwell, R., Basaglia, M., van Zyl, W., Viljoen, M., Casella, S., & Favaro, L. (2024). Consolidated bioprocessing of the organic fraction of municipal solid waste into bioethanol. Energy Conversion and Management, 302, 118105. https://doi.org/10.1016/j.enconman.2024.118105
Hamdi, G., Abbas, M., & Ali, S. (2024). Bioethanol production from agricultural waste: A review. Journal of Engineering and Sustainable Development, 28(02), 233-252. https://doi.org/10.31272/jeasd.28.2.7
Instituto Nacional de Estadística e Informática (INEI). (2021). Indicadores de Resultados de los Programas Presupuestales, 2020.
Lozano, P., & Barbarán, H. (2021). La gestión ambiental en los gobiernos locales en América Latina. Ciencia Latina Revista Científica Multidisciplinar, 5(1), 212-228. https://doi.org/10.37811/cl_rcm.v5i1.221
Márquez, F., & Duchen, E. (2017). Optimización del procesamiento de las cáscaras de mandarina, naranja, limón y toronja; para la obtención de la d-glucosa y el ácido galacturónico y una potencial aplicación industrial [Tesis de Licenciatura, Universidad Mayor de San Andrés]. http://repositorio.umsa.bo/xmlui/handle/123456789/16312
Medina, J., Concepción, V., Pino, C., & Zerpa, F. (2024). Bioethanol from canary banana waste as an energy source to reduce the carbon footprint of island electricity systems. Fuel, 371, 131848. https://doi.org/10.1016/j.fuel.2024.131848
Novais, J., & Márquez, J. (2020). Los residuos sólidos urbanos municipales en Luanda, caracterización y consecuencias ambientales de su inadecuada gestión. Centro Azúcar, 47(1), 33-42. http://centroazucar.uclv.edu.cu/index.php/centro_azucar/article/view/167/158
Riera, M. (2024). Residuos de yuca y plátano como fuente de azúcares fermentables. Ciencia en Desarrollo, 15(1), 205-211. https://doi.org/10.19053/01217488.v15.n1.2024.15495
Saldanha, L., & Treichel, H. (2024). A review of anthocyanin extraction and bioethanol production from fruit residues. Revista Brasileira de Ciências Ambientais (RBCIAMB), 59, e1933. https://doi.org/10.5327/Z2176-94781933
Sánchez, M., Cruz, J., & Maldonado, P. (2019). Gestión de residuos sólidos urbanos en América Latina: un análisis desde la generación. Revista Finanzas y Política Económica, 11(2), 321-336. https://doi.org/10.14718/revfinanzpolitecon.2019.11.2.6
Vadalà, R., Lo Vecchio, G., Rando, R., Leonardi, M., Cicero, N., & Costa, R. (2023). A sustainable strategy for the conversion of industrial citrus fruit waste into bioethanol. Sustainability, 15(12), 9647. https://doi.org/10.3390/su15129647
Vargas, A., Díaz, D., Jaramillo, S., Rangel, F., Villa, D., & Villegas, J. (2022). Improving the tactical planning of solid waste collection with prescriptive analytics: A case study. Production, 32, 8. https://doi.org/10.1590/0103-6513.20210037
Xu, M., Sun, H., Chen, E., Yang, M., Wu, C., Sun, X., & Wang, Q. (2023). From waste to wealth: Innovations in organic solid waste composting. Environmental Research, 229, 115977. https://doi.org/10.1016/j.envres.2023.115977