WELL POSEDNESS FOR THE GOOD BOUSSINESQ EQUATION WITH INTERNAL DISSIPATION
Main Article Content
Abstract
This article focuses on the study of the good Boussinesq equation, proving the existence and uniqueness of solutions in periodic Sobolev spaces for s ≥ 2. The adopted strategy consists of first analyzing a particular case, in which one of the equation’s coefficients is identically zero, and then extending the results to the general case through an iterative procedure based on the fixed-point method. To achieve this, fundamental tools such as Semigroup Theory and Fourier Analysis are employed.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Batchelor, G. K. (1953). The theory of homogeneous turbulence, Cambridge University Press.S.
https://doi.org/10.1002/qj.49707934126
Bautista. (2023). Bona, J.L. & Sachsi, R. L. (1988). Global existence of smooth solutions
and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys. 118 (1), 15–29.
https://doi.org/10.1007/BF01218475
Boussinesq, J. (1872). Théorie des ondes et de remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide conten dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (2), 55-108.
http://www.numdam.org/item/JMPA_1872_2_17__55_0.pdf
Boussinesq, J. (1878). Essai sur la théorie des eaux courantes, J. Math. Pures Appl., 4 (3), 335-376.
http://www.numdam.org/item/JMPA_1878_3_4__335_0.pdf
Cazenave, T. & Haraux, A. (1998). An introduction to semilinear Evolution equations, Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press, Oxford. University Press, New York.
https://doi.org/10.1093/oso/9780198502777.001.0001
Cerpa, v & Rivas, I. (2018). On the controllability of the Boussinesq equation in low regularity, J. Evol. Equ., 18, 1501-1519.
https://doi.org/10.1007/s00028-018-0450-6
Farah, L.G. & Scialom, M. (2010). On the periodic "good" Boussinesq equation, Proc. Amer. Math. Soc.,138 (3), 953–964.
http://www.jstor.org/stable/40590688
Linares, F. (1993). Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (2), 257-293.
https://doi.org/10.1006/jdeq.1993.1108
Micu, S. & Pazoto, A. F. (2017). Stabilization of a Boussinesq system with generalized damping, Systems Control Lett. 105, 62-69.
https://doi.org/10.1016/j.sysconle.2017.04.012
Micu, S., Ortega, J. H., Rosier, L. & Zhang, B.-Y. (2009). Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst. 24, 273–313.
https://www.aimsciences.org/article/doi/10.3934/dcds.2009.24.273
Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag: New York-Berlin-Heidelberg-Tokyo. http://dx.doi.org/10.1007/978-1-4612-5561-1
Scott-Russell, J. (1845). Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London.
Vallis, G. K. (2017). Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press.
https://doi.org/10.1017/9781107588417
Zakharov, V. E., L’vov, V. S. & Falkovich, G. (1992). Kolmogorov Spectra of Turbulence I: wave turbulence, Springer Series in Nonlinear Dynamics.