WELL POSEDNESS FOR THE GOOD BOUSSINESQ EQUATION WITH INTERNAL DISSIPATION

Main Article Content

George J. Bautista
Leyter Potenciano-Machado
Cristian Loli Prudencio

Abstract

This article focuses on the study of the good Boussinesq equation, proving the existence and uniqueness of solutions in periodic Sobolev spaces for s ≥ 2. The adopted strategy consists of first analyzing a particular case, in which one of the equation’s coefficients is identically zero, and then extending the results to the general case through an iterative procedure based on the fixed-point method. To achieve this, fundamental tools such as Semigroup Theory and Fourier Analysis are employed.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
George J. Bautista, Leyter Potenciano-Machado, & Cristian Loli Prudencio. (2025). WELL POSEDNESS FOR THE GOOD BOUSSINESQ EQUATION WITH INTERNAL DISSIPATION. Revista De Investigación Hatun Yachay Wasi, 4(2), 33–42. https://doi.org/10.57107/hyw.v4i2.94
Section
Artículos
Author Biographies

George J. Bautista, Universidad Tecnológica de los Andes (UTEA), Abancay, Perú.

 

 

Leyter Potenciano-Machado, Universidad Tecnológica de los Andes (UTEA), Abancay, Perú.

 

 

Cristian Loli Prudencio, Universidade Federal Fluminense, Campus Gragoatá, Brasil

 

 

References

Batchelor, G. K. (1953). The theory of homogeneous turbulence, Cambridge University Press.S.

https://doi.org/10.1002/qj.49707934126

Bautista. (2023). Bona, J.L. & Sachsi, R. L. (1988). Global existence of smooth solutions

and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys. 118 (1), 15–29.

https://doi.org/10.1007/BF01218475

Boussinesq, J. (1872). Théorie des ondes et de remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide conten dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (2), 55-108.

http://www.numdam.org/item/JMPA_1872_2_17__55_0.pdf

Boussinesq, J. (1878). Essai sur la théorie des eaux courantes, J. Math. Pures Appl., 4 (3), 335-376.

http://www.numdam.org/item/JMPA_1878_3_4__335_0.pdf

Cazenave, T. & Haraux, A. (1998). An introduction to semilinear Evolution equations, Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press, Oxford. University Press, New York.

https://doi.org/10.1093/oso/9780198502777.001.0001

Cerpa, v & Rivas, I. (2018). On the controllability of the Boussinesq equation in low regularity, J. Evol. Equ., 18, 1501-1519.

https://doi.org/10.1007/s00028-018-0450-6

Farah, L.G. & Scialom, M. (2010). On the periodic "good" Boussinesq equation, Proc. Amer. Math. Soc.,138 (3), 953–964.

http://www.jstor.org/stable/40590688

Linares, F. (1993). Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (2), 257-293.

https://doi.org/10.1006/jdeq.1993.1108

Micu, S. & Pazoto, A. F. (2017). Stabilization of a Boussinesq system with generalized damping, Systems Control Lett. 105, 62-69.

https://doi.org/10.1016/j.sysconle.2017.04.012

Micu, S., Ortega, J. H., Rosier, L. & Zhang, B.-Y. (2009). Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst. 24, 273–313.

https://www.aimsciences.org/article/doi/10.3934/dcds.2009.24.273

Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag: New York-Berlin-Heidelberg-Tokyo. http://dx.doi.org/10.1007/978-1-4612-5561-1

Scott-Russell, J. (1845). Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London.

https://books.google.com.br/books?id=qL5ZAAAAcAAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Vallis, G. K. (2017). Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press.

https://doi.org/10.1017/9781107588417

Zakharov, V. E., L’vov, V. S. & Falkovich, G. (1992). Kolmogorov Spectra of Turbulence I: wave turbulence, Springer Series in Nonlinear Dynamics.

https://doi.org/10.1007/978-3-642-50052-7