¿Podría el estrés frío mejorar el funcionamiento de las células asesinas naturales del sistema inmune?
Contenido principal del artículo
Resumen
Las células asesinas naturales (NK) son un componente crucial del sistema inmunitario innato, con una función de inmunovigilancia bien conocida que incluye el reconocimiento y la eliminación de células cancerosas e infectadas por virus. Ciertas situaciones patológicas y fisiológicas alteran la función de las células asesinas naturales, sometiendo nuestro cuerpo a infecciones y desarrollo de cáncer. Por lo tanto, es relevante identificar vías para mejorar la actividad de las células asesinas naturales. En este artículo, se presenta una alternativa que utiliza el estrés por frío para promover la función de estas células de nuestro sistema inmune
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Citas
Abel, A., Yang, C., Thakar, M., & Malarkannan, S. (2018) Natural Killer Cells: Development, Maturation, and Clinical Utilization. Frontiers in Immunology, 9, 1869. https://doi.org/10.3389/fimmu.2018.01869.
Ahern, D., & Brennan, F. (2011). The role of Natural Killer cells in the pathogenesis of rheumatoid arthritis: Major contributors or essential homeostatic modulators? Immunology Letters, 136(2), 115–21. doi: 10.1016/j.imlet.2010.11.001.
Al-Attar, A., Presnell, S., Peterson, C., Thomas, D., & Lutz, C. (2016). The effect of sex on immune cells in healthy aging: Elderly women have more robust natural killer lymphocytes than do elderly men. Mechanisms of Ageing and Development, 156, 25–33. doi: 10.1016/j.mad.2016.04.001.
Allen, T. (1973). Common colds in Antarctica. Epidemiology and Infection, 71(4), 649–56. doi: 10.1017/s0022172400022920.
Arnon, T., Markel, G., & Mandelboim, O. (2006). Tumor and viral recognition by natural killer cells receptors. Seminars in Cancer Biology, 16(5), 348–58. doi: 10.1016/j.semcancer.2006.07.005. Beilin, B., Shavit, Y., Razumovsky, J., Wolloch, Y., Zeidel, A., & Bessler, H. (1998). Effects of Mild Perioperative Hypothermia on Cellular Immune Responses. Anesthesiology. 89(5), 1133–40. doi: 10.1097/00000542-199811000-00013.
Beilin, B., Shavit, Y., Razumovsky, J., Wolloch, Y., Zeidel, A., & Bessler, H. (1998). Effects of Mild Perioperative Hypothermia on Cellular Immune Responses. Anesthesiology. 89(5), 1133–40. doi: 10.1097/00000542-199811000-00013.
Beliën, J., Goris, A., & Matthys, P. (2022). Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Frontiers in Immunology, 13, 869447. doi: 10.3389/fimmu.2022.869447.
Catania, L. (2022). The adaptive (aka “acquired”) immune system. The Paradox of the Immune System, 25-43. doi: 10.1016/B978-0-323-95187-6.00006-6.
Ebihara, T., Shingai, M., Matsumoto, M., Wakita, T., & Seya, T. (2008). Hepatitis C virus-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells. Hepatology, 48(1), 48–58. doi: 10.1002/hep.22337.
Goldszmid, R., Caspar, P., Rivollier, A., White, S., Dzutsev, A., Hieny, S., Kelsall, B., Trinchieri, G., Sher A. (2012). NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity, 36(6), 1047–59. doi: 10.1016/j.immuni.2012.03.026.
Gounder, S., Abdullah, B., Radzuanb, N., Zain, F., Sait, N., Chua, C., & Subramani B. (2018). Effect of Aging on NK Cell Population and Their Proliferation at Ex Vivo Culture Condition. Analytical cellular pathology, 7871814. doi: 10.1155/2018/7871814.
Griffin, B., Corredor, J., Pei, Y., & Nagy, É. (2021). Downregulation of Cell Surface Major Histocompatibility Complex Class I Expression Is Mediated by the Left-End Transcription Unit of Fowl Adenovirus 9. Viruses, 13(11), 2211. doi: 10.3390/v13112211.
Gyurova, I., Ali, A., & Waggoner, S. (2020). Natural Killer Cell Regulation of B Cell Responses in the Context of Viral Infection. Viral Immunology, 33(4), 334–41. doi: 10.1089/vim.2019.0129.
Janský, L., Pospíšilová, D., Honzová, S., Uličný, B., Šrámek, P., Zeman, V., & Kamínková J. (1996). Immune system of cold-exposed and cold-adapted humans. European Journal of Applied Physiology and Occupational Physiology, 72(5–6),445–50. doi: 10.1007/BF00242274.
Kany, S., Vollrath, J., Relja, B. (2019). Cytokines in Inflammatory Disease. International journal of molecular sciences, 20(23), 6008. doi: 10.3390/ijms20236008.
Kappel, M., Tvede, N., Galbo, H., Haahr, P., Kjaer, M., Linstow, M., Klarlund, K., & Pedersen, B. (1991). Evidence that the effect of physical exercise on NK cell activity is mediated by epinephrine. Journal of Applied Physiology, 70(6), 2530–4. doi: 10.1152/jappl.1991.70.6.2530.
Kox, M., Van Eijk, L., Zwaag, J., Van Den, J., Sweep, F., Van Der Hoeven, J., & Pickkers P. (2014). Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7379–84. doi: 10.1073/pnas.1322174111.
Kozyreva, T., Tkachenko, E., Kozaruk, V., Latysheva, T., & Gilinsky, M (1999). Effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin. The American Journal of Physiology, 276(6), R1668–72. doi: 10.1152/ajpregu.1999.276.6.R1668.
Kshersagar, J., Damle, M., Bedge, P., Jagdale, R., Tardalkar, K., Jadhav, D., Toro, Y., Sharma, R., & Joshi, M. (2022). Downregulation of MICA/B tumor surface expressions and augmented soluble MICA serum levels correlate with disease stage in breast cancer. Breast Disease, 41(1), 471–80. doi: 10.3233/BD-220023.
Kucuksezer, U., Aktas, E., Esen, F., Tahrali, I., Akdeniz, N., Gelmez, M., & Deniz, G. (2021). The Role of Natural Killer Cells in Autoimmune Diseases. Frontiers in Immunology, 12, 622306. https://doi.org/10.3389/fimmu.2021.622306.
Kumar, S. (2018). Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology, 154(3), 383–93. doi: 10.1111/imm.12921.
Lackovic, V., Borecký, L., Vigas, M., & Rovenský, J. (1988). Activation of NK Cells in Subjects Exposed to Mild Hyper-or Hypothermic Load. Journal of Interferon Research, 8(3), 393–402. doi: 10.1089/jir.1988.8.393.
Lamotte, G., Boes, C., Low, P., Coon, E. (2021). The expanding role of the cold pressor test: a brief history. Clinical Autonomic Research, 31(2), 153–5. doi: 10.1007/s10286-021-00796-4.
Liu, M., Liu, J., Zhang, X., Xiao, Y., Jiang, G., & Huang, X. (2021). Activation status of CD56dim natural killer cells is associated with disease activity of patients with systemic lupus erythematosus. Clinical Rheumatology, 40(3), 1103–12. doi: 10.1007/s10067-020-05306-x.
Lu, J., Li, S., Li, X., Zhao, W., Duan, X., Gu, X., Xu, J., Yu, B., Sigal, L., Dong, Z., Xie, L., & Fang, M. (2021). Declined miR‐181a‐5p expression is associated with impaired natural killer cell development and function with aging. Aging Cell, 20(5). doi: 10.1111/acel.13353.
Mace, E. (2023). Human natural killer cells: Form, function, and development. The Journal of Allergy and Clinical Immunology, 151(2), 371–85. doi: 10.1016/j.jaci.2022.09.022.
Mace, E., & Orange, J. (2019). Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunological Reviews, 287(1), 202–25. doi: 10.1111/imr.12725.
Mavoungou, E., Luty, A., & Kremsner, P. (2003). Natural killer (NK) cell-mediated cytolysis of Plasmodium falciparum-infected human red blood cells in vitro. European cytokine network, 14(3), 34–42. https://pubmed.ncbi.nlm.nih.gov/14656686/.
Nicholson, L (2016). The immune system. Essays Biochemistry, 60(3), 275–301. doi: 10.1042/EBC20160017.
Ota, T., Okubo, Y., & Sekiguchi, M. (1990). Analysis of immunologic mechanisms of high natural killer cell activity in tuberculous pleural effusions. The American Review of Respiratory Disease, 142(1), 29–33. doi: 10.1164/ajrccm/142.1.29.
Parsons, M., Zipperlen, K., Gallant, M., & Grant, M. (2010). Killer cell immunoglobulin-like receptor 3DL1 licenses CD16-mediated effector functions of natural killer cells. Journal of Leukocyte Biology.,88(5), 905–12. doi: 10.1189/jlb.1009687.
Phan, M., Chun, S., Kim, S., Ali, A., Lee, S., Kim, S., Kim, S., & Cho, D. (2017). Natural killer cell subsets and receptor expression in peripheral blood mononuclear cells of a healthy Korean population: Reference range, influence of age and sex, and correlation between NK cell receptors and cytotoxicity. Human Immunology, 78(2), 103–12. doi: 10.1016/j.humimm.2016.11.006.
Riera, M., Pérez, D., & Castillo, C. (2016). Innate immunity in vertebrates: an overview. Immunology, 148(2), 125–39. doi: 10.1111/imm.12597.
Sellers, A., Pallubinsky, H., Rense, P., Bijnens, W., Van De Weijer, T., Moonen, E., Schrauwen, P., & van Marken, W. (1985). The effect of cold exposure with shivering on glucose tolerance in healthy men. Journal of Applied Physiology, 130(1), 193–205. doi: 10.1152/japplphysiol.00642.2020.
Sinkovics, J., Shirato, E., Cabiness, J., & Shullenberger, C. (1970). Cytotoxic Lymphocytes in Hodgkin’s Disease? British Medical Journal, 1(5689), 172–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1699068/.
Solianik, R., Skurvydas, A., Vitkauskienė, A., & Brazaitis, M. (2014). Gender-specific cold responses induce a similar body-cooling rate but different neuroendocrine and immune responses. Cryobiology, 69(1), 26–33. doi: 10.1016/j.cryobiol.2014.04.015.
Upshaw, J., Arneson, L., Schoon, R., Dick, C., Billadeau, D., & Leibson, P. (2006). NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nature Immunology, 7(5), 524–32. doi: 10.1038/ni1325.
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. (2008). Functions of natural killer cells. Nature Immunology, 9(5), 503–10. https://doi.org/10.1038/ni1582.
Wang, J., Hou, H., Mao, L., Wang, F., Yu, J., Luo, Y., Lin, Q., & Sun, Z. (2022). TIGIT Signaling Pathway Regulates Natural Killer Cell Function in Chronic Hepatitis B Virus Infection. Frontiers in Medicine, 8, 816474. doi: 10.3389/fmed.2021.816474.
Yu, J., & Caligiuri, M. (2023). Viral- and tumor-reactive natural killer cells. Seminars in Immunology, 67, 101749. doi: 10.1016/j.smim.2023.101749.
Zhang, W., Zhao, Z., & Li, F. (2022). Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Molecular Immunology, 144, 58–70. doi: 10.1016/j.molimm.2022.02.015.
Zhang, X., Zhang, S., Wang, C., Wang, B., & Guo, P. (2014). Effects of Moderate Strength Cold Air Exposure on Blood Pressure and Biochemical Indicators among Cardiovascular and Cerebrovascular Patients. International Journal of Environmental Research and Public Health, 11(3), 2472–87. doi: 10.3390/ijerph110302472.
Zwaag, J., Naaktgeboren, R., Van Herwaarden, A., Pickkers, P., & Kox, M. (2022). The Effects of Cold Exposure Training and a Breathing Exercise on the Inflammatory Response in Humans: A Pilot Study. Psychosomatic Medicine, 84(4), 457–67. doi: 10.1097/PSY.0000000000001065.