Evaluación de la producción de sedimentos en la cuenca del río de Rontoccocha

Contenido principal del artículo

Danny Saavedra Ore
Aderlee Gómez Achulli

Resumen

En los últimos años, el cambio climático se ha convertido en la principal causa que viene afectando en gran medida la calidad de vida y la economía de muchas familias a nivel mundial. A fin de contrarrestar estos efectos en el Perú, se han implementado los Mecanismos de Retribución por Servicios Ecosistémicos-MERESE, herramientas para invertir recursos económicos en la recuperación y conservación de ecosistemas en las zonas de recarga hídrica de las fuentes que administra las Empresas Prestadoras de Servicio. Está investigación tuvo como objetivo evaluar los impactos de la producción de sedimentos, producto de la implementación del MERESE liderado por la EPS EMUSAP ABANCAY S.A. Se consideró como área de estudio la unidad hidrográfica del río de Rontoccocha y metodología RUSLE. Se calculó la producción de sedimentos y se identificaron las zonas con alta producción de sedimentos. Se encontró que el valor más elevado de producción de sedimentos se da en las áreas con alta pendiente y poca vegetación.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Saavedra Ore, D., & Gómez Achulli, A. (2023). Evaluación de la producción de sedimentos en la cuenca del río de Rontoccocha. Revista De Investigación Hatun Yachay Wasi, 3(1), 35–46. https://doi.org/10.57107/hyw.v3i1.55
Sección
Artículos

Citas

Bhatta, L., van Oort, B., Rucevska, I., & Baral, H. (2014). Payment for ecosystem services: possible instrument for managing ecosystem services in Nepal. International Journal of Biodiversity Science, Ecosystem Services & Management, 10(4), 289-299. https://doi.org/10.1080/21513732.2014.973908.

Cervantes, R. (2022). Costo efectividad del manejo de ecosistemas altoandinos en la regulación hídrica de la unidad hidrográfica de Rontoccocha, Abancay Apurímac. [Tesis Doctoral, Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/5180.

Clérici, C., & García, F. (2001). Aplicaciones del modelo USLE/RUSLE para estimar pérdidas de suelo por erosión en Uruguay y la región sur de la cuenca del Río de la Plata. Agrociencia-Sitio en Reparación, 5(1), 92-103. http://164.73.52.4/agrociencia/index.php/directorio/article/view/574.

Chuenchum, P., Xu, M., & Tang, W. (2020). Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. International Soil and Water Conservation Research, 8(3), 213-227. https://doi.org/10.1016/j.iswcr.2020.06.006.

Derissen, S., & Latacz-Lohmann, U. (2013). What are PES? A review of definitions and an extension. Ecosystem Services, 6, 12-15. https://doi.org/10.1016/j.ecoser.2013.02.002.

Desmet, P., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of soil and water conservation, 51(5), 427-433.

D.S. N°009-2016-MINAM (20 de julio del 2016). Aprueban Reglamento de la Ley N° 30215, Ley de Mecanismos de Retribución por Servicios Ecosistémicos. Diario Oficial el Peruano. https://www.minam.gob.pe/wp-content/uploads/2016/07/DS_009-2016-MINAM.pdf.

D.S. N°019-2017-VIVIENDA (23 de junio del 2017). Decreto Supremo que aprueba el Reglamento del Decreto Legislativo N° 1280, Decreto Legislativo que aprueba la Ley Marco de la Gestión y Prestación de los Servicios de Saneamiento. Diario Oficial El Peruano. https://www.minam.gob.pe/wp-content/uploads/2017/07/DS-019-2017-VIVIENDA-1.pdf.

FAO/UNESCO (1981). Mapa Mundial de Suelos de la FAO/UNESCO. https://www.fao.org/soils-portal/soil-survey/mapas-historicos-de-suelos-y-bases-de-datos/mapa-mundial-de-suelos-de-faounesco/es/.

Fiorini, A., Mullally, C., Swisher, M., & Putz, F. (2020). Forest cover effects of payments for ecosystem services: Evidence from an impact evaluation in Brazil. Ecological Economics, 169, 106522. https://doi.org/10.1016/j.ecolecon.2019.106522.

Ghosal, K., & Das, S. (2020). A review of RUSLE model. Journal of the Indian Society of Remote Sensing, 48(4), 689-707. https://doi.org/10.1007/s12524-019-01097-0.

Gobierno Vasco (2005). Mapa de erosión de suelos de la comunidad autónoma de Euskadi. https://www.geasig.com/erosion-con-arcgis/.

Grima, N., Singh, S. J., Smetschka, B., & Ringhofer, L. (2016). Payment for Ecosystem Services (PES) in Latin America: Analyzing the performance of 40 case studies. Ecosystem services, 17, 24-32. https://doi.org/10.1016/j.ecoser.2015.11.010.

Immerzeel, W., Stoorvogel, J., & Antle, J. (2008). Can payments for ecosystem services secure the water tower of Tibet? Agricultural Systems, 96(1-3), 52-63. https://doi.org/10.1016/j.agsy.2007.05.005.

Lopes, M., Pissarra, T., Mello, A., Lopes, M., Araújo, R., Zanata, M., Leal, F., & Sanches, L. (2020). The assessment of hydrological availability and the payment for ecosystem services: A pilot study in a Brazilian headwater catchment. Water, 12(10), 2726. https://doi.org/10.3390/w12102726.

Lu, D., Li, G., Valladares, G., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing, and GIS. Land degradation & development, 15(5), 499-512. https://doi.org/10.1002/ldr.634.

Nyesheja, E., Chen, X., El-Tantawi, A., Karamage, F., Mupenzi, C., & Nsengiyumva, J. (2019). Soil erosion assessment using RUSLE model in the Congo Nile Ridge region of Rwanda. Physical Geography, 40(4), 339-360. https://doi.org/10.1080/02723646.2018.1541706.

Perevochtchikova, M., Castro, R., Langle, A., & Ugalde, J. (2021). A systematic review of scientific publications on the effects of payments for ecosystem services in Latin America, 2000–2020. Ecosystem Services, 49, 101270. https://doi.org/10.1016/j.ecoser.2021.101270.

Phinzi, K., & Ngetar, N. (2019). The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. International Soil and Water Conservation Research, 7(1), 27-46. https://doi.org/10.1016/j.iswcr.2018.12.002.

Rejani, R., Rao, K., Osman, M., Rao, S., Reddy, K., Chary, G., & Samuel, J. (2016). Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster. Environmental monitoring and assessment, 188(3), 1-16. https://doi.org/10.1007/s10661-016-5143-4.

Sabino, E., Lavado, W., & Asencios, H. (2021). Atlas de producción de sedimentos del Perú: Una evaluación histórica y futura. Lima: Servicio Nacional de Meteorología e Hidrología del Perú. https://hdl.handle.net/20.500.12542/1609.

Sabino, E., Felipe, O. & Lavado, W. (2017), Atlas de erosión de suelos por regiones hidrológicas del Perú, Vol. 2. https://idesep.senamhi.gob.pe/portalidesep/files/tematica/atlas/erosi%C3%B3n_de_suelo/Atlas_Erosion_Suelos_por_Regiones_Hidrologicas_Peru.pdf.

Scullion, J., Thomas, C., Vogt, K., Pérez, O., & Logsdon, M. (2011). Evaluating the environmental impact of payments for ecosystem services in Coatepec (México) using remote sensing and on-site interviews. Environmental Conservation, 38(4), 426-434. https://doi.org/10.1017/S037689291100052X.

Servicio Geológico de Estados Unidos. (2021). Earth Data. https://www.earthdata.nasa.gov/eosdis/daacs/asf.

Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., Levy, R., Vermote, E., & Wolfe, R. (2012). Impact of sensor degradation on the MODIS NDVI time series. Remote Sensing of Environment, 119, 55-61. https://doi.org/10.1016/j.rse.2011.12.001.

Wischmeier, W., & Smith, D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.