DEEP GENERATIVE MODEL DESIGN WITH GOOGLE AND OPENAI APIs FOR OPTIMIZING SCIENTIFIC RESEARCH

Main Article Content

Abbon Vásquez Ramírez
Claudio Isaias Huancahuire Bravo
Adler Stalin Rivera Centeno
Guido Bravo Mendoza

Abstract

This study focuses on optimizing scientific research by integrating artificial intelligence (AI) and deep generative models, using Google and OpenAI APIs. The aim is to develop a web based system capable of generating research content and providing accurate educational recommendations, thus improving the efficiency of academic production. The designed system is based on AI architecture and deep generative models, using APIs such as Google’s Gemini and OpenAI, to process research data and provide accurate responses to users. The implementation of this system seeks to facilitate access to advanced analysis tools, encourage proactive communication, and improve learning outcomes and research in higher education. Preliminary results demonstrate that the proposed tool is effective in optimizing scientific research, providing useful recommendations and accelerating the process of analyzing and generating academic content.

Downloads

Download data is not yet available.

Article Details

How to Cite
Vásquez Ramírez, . A. ., Huancahuire Bravo, . C. I. ., Rivera Centeno, A. S. ., & Bravo Mendoza, G. . (2024). DEEP GENERATIVE MODEL DESIGN WITH GOOGLE AND OPENAI APIs FOR OPTIMIZING SCIENTIFIC RESEARCH. Revista De Investigación Hatun Yachay Wasi, 4(1), 40–50. https://doi.org/10.57107/hyw.v4i1.83
Section
Artículos

References

Akter, S., Hossain, A., Sajib, S., Sultana, S., Rahman, M., & Vrontis, D. (2023). Akter. Technovation, 125. doi:https://doi.org/10.1016/j.technovation.2023.102768

Alcalde, J., & Diego, J. (2024). Un estudio del uso de modelos generativos de inteligencia artificial como asistentes en las fases tempranas del proceso de diseño. Proceedings from the International Congress on Project Management and Engineering. Jaén. AEIPRO. doi:https://doi.org/10.61547/2403016

Abdulla, A., Mohammed I., Yousif, Z., & Alsubari, B. (2024). Generative AI Chatbot for Engineering Scientific Journal. Tikrit Journal of Engineering Sciences, 31(3), 72-79. http://doi.org/10.25130/tjes.31.3.7

Coello, V., Suárez, D., & Bravo, K. (2024). La inteligencia artificial en la optimización del proceso de investigación científica en docentes del Instituto Superior Tecnológico Simón Bolívar. South Florida Journal of Development, 5(7), e4090. https://doi.org/10.46932/sfjdv5n7-006

Duo, P. (2024). Generative artificial intelligence: educational reflections from an analysis of scientific production. Journal of Technology and Science Education, 14(3), 756-769. doi:https://doi.org/10.3926/jotse.2680

Elbadawi, M., Li, H., Basit, A., & Gaisford, S. (2024). The role of artificial intelligence in generating original scientific research. International Journal of Pharmaceutics, 29-39. doi:https://doi.org/10.1016/j.ijpharm.2023.123741

Garcia, F. (2024). Inteligencia artificial generativa y educación. Education in the Knowledge Society (EKS), 25, e31942. https://doi.org/10.14201/eks.31942

OpenAI. (2024). El papel de la inteligencia artificial generativa en la publicación científica. Educación XX1, 9-15. doi:https://doi.org/10.5944/educxx1.39205

Ricardo, L., Liliana, C., & Pamela, R. (2023). Impacto de los modelos generativos de lenguaje de inteligencia artificial en la Educación Superior. TLATEMOANI Revista Académica de Investigación, 14(44), 19-40. doi:https://doi.org/10.51896/tlatemoani/TARU9220S

Sánchez, M., & González, V. (2024). La IA generativa como copiloto en el diseño de recursos educativos. Padres Y Maestros / Journal of Parents and Teachers, (398), 12–18. https://doi.org/10.14422/pym.i398.y2024.002