EFFECT OF ORGANIC ACIDS ON INTESTINAL INTEGRITY, PRODUCTIVE AND ECONOMIC PERFORMANCE OF BROILERS
Main Article Content
Abstract
The aim of this study was to evaluate the effect of organic acids on intestinal integrity, productive and economic performance of broiler chickens. One hundred and eleven male chickens of the Cobb Vantres 500, one day old, with an average initial weight of 44.73 g, were used; they were evaluated for 42 days in three phases: Starter (1 to 10 days), growth (11-22 days) and fattening (23-42 days). The chickens were distributed according to a completely randomized block design (RBD) with four treatments: basic diet without organic acids (SAO); basic diet +1.0 kg/t of Fhorce® organic acids (AOF); basic diet + 2.0 kg/t of Salkil® organic acids (AOS) and basic diet + 2.0 kg/t of Prefect® organic acids (AOP), with four replications per treatment being the experimental unit of seven chickens. The formulated diets covered nutritional requirements at each stage, with similar nutritional and energetic value. ANOVA and Tukey’s test were used to compare averages. There was a significant difference (p: <0.05) in weight gain, feed conversion with the addition of organic acids in the diet, and a profitability of 24.2 % for the treatment with Prefect® organic acid (AOP); in addition, in the treatments with Fhorce®, Salkil® and Prefect®, on intestinal integrity, between the measurements of villus height, crypt depth and villus/crypt ratio in the duodenum and jejunum portions at 22 and 42 days of age. The use of organic acids in broiler diets improves their intestinal integrity, economic profitability and productivity.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Adhikari, P., Yadav, S., Cosby, D., Cox, N., Jendza, J., & Kim, W. (2020). Research Note: Effect of organic acid mixture on growth performance and Salmonella Typhimurium colonization in broiler chickens. Poultry Science, 99(5), 2645-2649. https://doi.org/10.1016/j.psj.2019.12.037
Angel, J., Mesa, N., & Narváez, W. (2019). Ácidos orgánicos, una alternativa en la nutrición avícola: una revisión. Ces Medicina Veterinaria y Zootecnia, 14(2), 45-58. https://doi.org/10.21615/cesmvz.14.2.4
Betancur, M. (2023). Premezcla conservante con ácido fumárico para uso en la industria de panificación. Ciencia en Desarrollo, 14(2), 113-124. https://doi.org/10.19053/01217488.v14.n2.2023.14648
Carvalho, I., & Santos, L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environment International, 94, 736-757. https://doi.org/10.1016/j.envint.2016.06.025
COBB 500. (2015). Suplemento informativo sobre rendimiento y nutrición de pollos de engorde. http://www.cobbvantress.com/languages/guidefiles/fa217990-20c9-4ab1-a54e-3bd02d974594_es.pdf
El Baaboua, A., El Maadoudi, M., Bouyahya, A., Belmehdi, O., Kounnoun, A., Zahli, R., & Abrini, J. (2018). Evaluation of antimicrobial activity of four organic acids used in chicks feed to control Salmonella Typhimurium: Suggestion of amendment in the search standard. International Journal of Microbiology, 2018:7352593. https://doi.org/10.1155/2018/7352593
Emami, N., Daneshmand, A., Naeini, S., Graystone, E., & Broom, L. (2017). Effects of commercial organic acid blends on male broilers challenged with E. coli K88: Performance, microbiology, intestinal morphology, and immune response. Poultry Science, 96(9), 3254-3263. https://doi.org/10.3382/ps/pex106
ESVAC. (2017). Sales of veterinary antimicrobial agents in 30 European countries in 2015. Trends from 2010 to 2015. https://www.ema.europa.eu/en/documents/report/seventh-esvac-report-sales-veterinary-antimicrobial-agents-30-european-countries-2015_en.pdf
Forgetta, V., Rempel, H., Malouin, F., Vaillancourt, R., Topp, E., & Dewar, K. (2012). Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. Poultry Science, 91(2), 512-525. https://doi.org/10.3382/ps.2011-01738
Furtula, V., Farrell, E., Diarrassouba, F., Rempel, H., Pritchard, J., & Diarra, M. (2010). Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poultry Science, 89(1), 180-188. https://doi.org/10.3382/ps.2009-00198
Gonzáles, A., Icochea, D., Reyna, S., Guzmán, J., Cazorla, M., Lúcar, J., & San Martín, V. (2013). Efecto de la suplementación de ácidos orgánicos sobre los parámetros productivos en pollos de engorde. Revista de Investigaciones Veterinarias del Perú, 24, 32-37. https://doi.org/10.15381/rivep.v24i1.1653
Gómez, M. (2023). Evaluación química, nutricional in vitro e in situ de ensilado de papaya de desecho y pasto pangola. Revista MVZ Córdoba, 28(1), e2883. https://doi.org/10.21897/rmvz.2883
Hernandez, F., Garcia, V., Madrid, J., Orengo, J., Catalá, P., & Megias, M. (2006). Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. British Poultry Science, 47, 50-56. https://doi.org/10.1080/00071660500475574
Hubbard, L., Givens, C., Griffin, D., Iwanowicz, L., Meyer, M., & Kolpin, D. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. Science of the Total Environment, 735, 139459. https://doi.org/10.1016/j.scitotenv.2020.139459
López, A., Burgos, T., Díaz, M., Mejía, R., & Quinteros, E. (2018). Contaminación microbiológica de la carne de pollo en 43 supermercados de El Salvador. Alerta Revista Científica del Instituto Nacional de Salud, 1(2), 45-53. https://doi.org/10.5377/alerta.v1i2.7134
López, J. (2023). El ácido ascórbico en el tratamiento de vaginosis recurrente. Revista Diversidad Científica, 3(1), 281-289. https://doi.org/10.36314/diversidad.v3i1.69
Manzetti, S., & Ghisi, R. (2014). The environmental release and fate of antibiotics. Marine Pollution Bulletin, 79(1), 7-15. https://doi.org/10.1016/j.marpolbul.2014.01.005
Marti, E., Variatza, E., & Balcazar, J. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22(1), 36-41. https://doi.org/10.1016/j.tim.2013.11.001
Mazhar, S., Li, X., Rashid, A., Su, J., Xu, J., Brejnrod, A., Su, J., Wu, Y., Zhu, Y., Zhou, S., Feng, R., & Rensing, C. (2020). Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Science of The Total Environment, 142702. https://doi.org/10.1016/j.scitotenv.2020.142702
Menconi, A., Shivaramaiah, S., Huff, G., Prado, O., Morales, J., Pumford, N., & Tellez, G. (2013). Effect of different concentrations of acetic, citric, and propionic acid dipping solutions on bacterial contamination of raw chicken skin. Poultry Science, 92, 2216-2220. https://doi.org/10.3382/ps.2013-03172
Ngamwongsatit, B., Tanomsridachchai, W., Suthienkul, O., Urairong, S., Navasakuljinda, W., & Janvilisri, T. (2016). Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe, 38, 88-93. https://doi.org/10.1016/j.anaerobe.2015.12.012
Papatisiros, V., Katsoulos, P., Koutoulis, K., Karatzia, M., Dedousi, A., & Christodoulopoulos, G. (2013). Alternatives to antibiotics for farm animals. CABI Reviews, 8, 1-15. https://doi.org/10.1079/PAVSNNR20138032
Polycarpo, G., Andretta, I., Kipper, M., Cruz, V., Dadalt, J., Rodrigues, P., & Albuquerque, R. (2017). Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poultry Science, 96(10), 3645-3653. https://doi.org/10.3382/ps/pex178
Rostagno, H., Texeira, L., Doncele, J., Gomes, P., Oliveira, R., Lopes, D., Ferreira, A., & Toledo, S. (2011). Tablas Brasileñas para aves y cerdos, composición de alimentos y requerimentos nutricionales. (3a ed.). Brasil: Universidad Federal de Viçosa, MG.
Rodriguez, D., Ortega, R., & Piñeros, Y. (2018). Propiedades fisicoquímicas, funcionales y microbiológicas de lechuga (Lactuca sativa L.) adicionada con ácidos orgánicos. Información Tecnológica, 29(4), 21-30. https://doi.org/10.4067/s0718-07642018000400021
Ruiz, L., Martínez, S., Gomes, C., Palma, N., Riveros, M., Ocampo, K., Durand, D., Ochoa, T., Ruiz, J., & Pons, M. (2018). Presencia de Enterobacteriaceae y Escherichia coli multirresistente a antimicrobianos en carne adquirida en mercados tradicionales en Lima. Revista Peruana de Medicina Experimental y Salud Pública, 35(3), 425-432. https://doi.org/10.17843/rpmesp.2018.353.3737
Sabour, S., Tabeidian, S., & Sadeghi, G. (2019). Dietary organic acid and fiber sources affect performance, intestinal morphology, immune responses and gut microflora in broilers. Animal Nutrition, 5(2), 156-162. https://doi.org/10.1016/j.aninu.2018.07.004
Sainz, A., Botana, A., Pereira, S., González, L., Veiga, M., Resch, C., Valladares, J., Arriaga, C., & Flores, G. (2020). Efecto de la fecha de corte y del uso de aditivos en la composición química y calidad fermentativa de ensilado de girasol. Revista Mexicana de Ciencias Pecuarias, 11(3), 620-637. https://doi.org/10.22319/rmcp.v11i3.5092
Sánchez, N., Vázquez, R., Rangel, Z., Hernández, C., Kawas, J., Hume, M., & Zamora, G. (2019). Inulina de agave y aceite de orégano mejoran la productividad de pollos de engorda. Ecosistemas y Recursos Agropecuarios, 6(18). https://doi.org/10.19136/era.a6n18.2197
Sugiharto, S. (2016). Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences, 15(2), 99-111. https://doi.org/10.1016/j.jssas.2014.06.001
Svihus, B. (2014). Function of the digestive system. Journal of Applied Poultry Research, 23(2), 306-314. https://doi.org/10.3382/japr.2014-00937
Tixicuro, J., Chanfrau, J., Céspedes, I., Fiallos, M., & Núñez, J. (2021). Optimización estadística de un bioproceso de ácido láctico a partir de lactosuero. Ciencia Latina Revista Científica Multidisciplinar, 5(3), 3259-3274. https://doi.org/10.37811/cl_rcm.v5i3.530
Zwe, Y., Tang, V., Aung, K., Gutiérrez, R., Ng, L., & Yuk, H. (2018). Prevalence, sequence types, antibiotic resistance and gyrA mutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control, 90, 233–240. https://doi.org/10.1016/j.foodcont.2018.03.004